留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米SiO2/聚乙二醇复合体系剪切增稠特性与机制

赵明媚 张进秋 彭志召 张建

赵明媚, 张进秋, 彭志召, 等. 纳米SiO2/聚乙二醇复合体系剪切增稠特性与机制[J]. 复合材料学报, 2022, 39(4): 1725-1738. doi: 10.13801/j.cnki.fhclxb.20210702.004
引用本文: 赵明媚, 张进秋, 彭志召, 等. 纳米SiO2/聚乙二醇复合体系剪切增稠特性与机制[J]. 复合材料学报, 2022, 39(4): 1725-1738. doi: 10.13801/j.cnki.fhclxb.20210702.004
ZHAO Mingmei, ZHANG Jinqiu, PENG Zhizhao, et al. Shear thickening characteristics and mechanism of nano-SiO2/polyethylene glycol composite system[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1725-1738. doi: 10.13801/j.cnki.fhclxb.20210702.004
Citation: ZHAO Mingmei, ZHANG Jinqiu, PENG Zhizhao, et al. Shear thickening characteristics and mechanism of nano-SiO2/polyethylene glycol composite system[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1725-1738. doi: 10.13801/j.cnki.fhclxb.20210702.004

纳米SiO2/聚乙二醇复合体系剪切增稠特性与机制

doi: 10.13801/j.cnki.fhclxb.20210702.004
基金项目: 国家自然科学基金(51605490)
详细信息
    通讯作者:

    张进秋,博士,博士生导师,研究方向为智能材料与振动控制 E-mail:zhangjq@163.com

  • 中图分类号: TB381

Shear thickening characteristics and mechanism of nano-SiO2/polyethylene glycol composite system

  • 摘要: 为分析纳米固体颗粒在剪切增稠液体(STF)稠化过程中的影响及其在中低速稳态剪切和高速动态冲击环境下发挥的作用,以纳米SiO2和聚乙二醇(PEG 200)作为分散相和连续相,以不同含量的纳米石墨和纳米金刚石颗粒为添加剂,制备STF。研究样品的摩擦系数曲线和不同温度下的流变特性,以临界剪切速率、稠化区间长度和增稠比为指标依托,分析不同温度环境和不同纳米固体添加剂含量下剪切增稠机制的变化。并通过分离式霍普金森压杆(SHPB)实验探究瞬态高速冲击条件下STF的力学响应。流变特性实验结果表明:高温环境下分子间排斥力增强,粒子簇的形成需更强的分子间动力接触,因此稠化区间长度延长。纳米金刚石颗粒加强了粒子簇之间的接触耦合力和接触概率,使体系最大黏度达1679 Pa·s,增稠比值高达318倍,提升了STF的流变特性。SHPB实验的结果表明:在受到瞬时冲击后,STF可在50~75 μs时间范围内完成动态响应,最大应力可达78 MPa。子弹的入射动能不仅会转变为热能和固液转换的相变能,还能转变为颗粒间的摩擦能。因此,通过改变固体添加剂的参数,能有效控制STF的力学特性和增稠效果,从而制备出适合不同领域应用的STF。

     

  • 图  1  固体添加剂形貌及尺寸分布:(a) 纳米石墨(NG)形貌;(b) 纳米金刚石(ND)形貌;(c) NG粒径分布;(d) ND粒径分布

    Figure  1.  Morphology and size distribution of solid additive: (a) Nano graphite (NG) morphology; (b) Nano diamond morphology; (c) NG particle size distribution; (d) ND particle size distribution

    图  2  纳米SiO2/PEG 200剪切增稠液体(STF)样品图

    Figure  2.  Nano-SiO2/PEG 200 shear thickening fluid (STF) sample

    图  3  铝制套筒分离式霍普金森压杆(SHPB)设备系统示意图

    Figure  3.  Schematic diagram of aluminum sleeve split Hopkinson pressure bar (SHPB) equipment system

    图  4  纳米SiO2/PEG 200 STF在不同温度下的黏度 ((a)~(e)) 和20℃下5种样品对比 (f)

    Figure  4.  Viscosity of nano-SiO2/PEG 200 STF at different temperatures ((a)-(e)) and comparison of five samples at 20℃ (f)

    图  5  纳米SiO2/PEG 200 STF在室温下的摩擦特性曲线

    Figure  5.  Friction characteristic curves of nano-SiO2/ PEG 200 STF at room temperature

    图  6  4种纳米SiO2/PEG 200样品在10 m/s冲击速度下SHPB力学结果:(a)应力-时间曲线;(b)同一时间下的应力-应变曲线;(c)能量吸收-时间曲线

    Figure  6.  SHPB mechanical results of four nano-SiO2/PEG 200 samples at 10 m/s impact velocity: (a) Stress-time curves; (b) Stress-strain curves at the same time; (c) Energy absorption-time curves

    图  7  30wt%SiO2/PEG 200流变曲线参数示意图(20℃)

    Figure  7.  Schematic diagram of rheological curve parameters of 30wt%SiO2/PEG 200 (20℃)

    ${\dot \gamma} _{\rm{C}} $—Critical shear rate; ${\dot \gamma} _{\rm{max}} $—Shear rate corresponding to maximum viscosity; ηmax—Maximum viscosity; ηC—Viscosity corresponding to critical shear rate

    图  8  不同温度下的纳米SiO2/PEG 200流变曲线参数:(a) 临界剪切速率;(b) 稠化区间;(c) 增稠比例

    Figure  8.  Rheological curve parameters of nano-SiO2/PEG 200 at different temperatures: (a) Critical shear rate; (b) Thickening interval; (c) Thickening ratio

    图  9  纳米固体添加剂对纳米SiO2/PEG 200 STF稠化过程影响

    Figure  9.  Effect of nano-solid additives on the nano-SiO2/PEG 200 STF thickening process

    图  10  纳米颗粒对纳米SiO2/聚乙二醇STF受到冲击时能量吸收影响

    Figure  10.  Impact of nanoparticles on energy absorption when nano-SiO2/polyethylene glycol STF is impacted

    表  1  纳米SiO2/聚乙二醇(PEG 200)复合体系样品设计

    Table  1.   Sample design of nano-SiO2/polyethylene glycol (PEG 200) composite system

    No. CodeDispersed phaseContinuous phaseType of additiveAdditive content/wt%
    STF-130wt%SiO2/PEG 200 30wt%SiO2 PEG 200
    STF-230wt%SiO2-1wt%NG/PEG 200 30wt%SiO2 PEG 200 NG 1
    STF-330wt%SiO2-3wt%NG/PEG 200 30wt%SiO2 PEG 200 NG 3
    STF-430wt%SiO2-1wt%ND/PEG 200 30wt%SiO2 PEG 200 ND 1
    STF-530wt%SiO2-3wt%ND/PEG 200 30wt%SiO2 PEG 200 ND 3
    下载: 导出CSV

    表  2  SHPB设备基本参数

    Table  2.   Parameters of SHPB equipment

    ParameterValue
    Incident rod length $ {L}_{\mathrm{I}} $/mm 2500
    Transmission rod length $ {L}_{\mathrm{T}} $/mm 2500
    Incident rod diameter $ {D}_{\mathrm{I}} $/mm 50
    Transmission rod diameter $ {D}_{\mathrm{T}} $/mm 50
    Distance between incident rod strain gauge and sample $ {L}_{\mathrm{I}\mathrm{S}} $/mm 1300
    Distance between transmission rod strain gauge and sample $ {L}_{\mathrm{T}\mathrm{S}} $/mm 1300
    Elasticity modulus of incident rod $ {E}_{\mathrm{A}} $/GPa 71
    Elasticity modulus of transmission rod $ {E}_{\mathrm{B}} $/GPa 71
    Rod material aluminum 7075
    Rod density $ \rho $/$ (\mathrm{g}\cdot{\mathrm{c}\mathrm{m}}^{-3}) $ 2.81
    Rod speed $ \nu $/$ ( $m·s−1) 5100
    Bullet diameter $ {D}_{\mathrm{s}} $/mm 50
    Bullet length $ {L}_{\mathrm{s}} $/mm 400
    Sample thickness $ {T}_{\mathrm{s}} $/mm 10
    Aluminum perforated sleeve length $ {L}_{\mathrm{T}\mathrm{U}} $/mm 50
    Aluminum perforated sleeve thickness $ {D}_{\mathrm{T}\mathrm{U}} $/mm 15
    下载: 导出CSV

    表  3  纳米SiO2/PEG 200 STF在室温下的摩擦特性参数

    Table  3.   Friction characteristic parameters of nano-SiO2/PEG 200 STF at room temperature

    CodeAverage friction coefficientMaximum friction coefficient
    30wt%SiO2/PEG 200 0.135 0.15
    30wt%SiO2-1wt%NG/PEG 200 0.136 0.146
    30wt%SiO2-3wt%NG/PEG 200 0.118 0.15
    30wt%SiO2-1wt%ND/PEG 200 0.159 0.187
    30wt%SiO2-3wt%ND/PEG 200 0.175 0.217
    下载: 导出CSV

    表  4  纳米SiO2/PEG 200 STF流变曲线参数

    Table  4.   Rheological curve parameters of nano-SiO2/PEG 200 STF

    CodeCritical shear
    rate $ {\dot{\mathrm{\gamma }}}_{\mathrm{C}}/{\rm{s}}^{-1} $
    Shear rate
    corresponding to
    maximum viscosity $ {\dot{\mathrm{\gamma }}}_{\mathrm{m}\mathrm{a}\mathrm{x}}/{\rm{s}}^{-1} $
    Viscosity
    corresponding to
    critical shear rate ${\mathrm{\eta } }_{\mathrm{C} }/(\mathrm{P}\mathrm{a} \cdot \mathrm{s})$
    Maximum
    viscosity
    $ {\eta }_{\mathrm{m}\mathrm{a}\mathrm{x}}/(\mathrm{P}\mathrm{a} \cdot \mathrm{s}) $
    Thickening
    ratio R
    30wt%SiO2/PEG 200-20℃ 7.4 14.8 2 396.7 198.4
    30wt%SiO2/PEG 200-40℃ 10.7 30.3 0.84 140 166.7
    30wt%SiO2/PEG 200-60℃ 20.4 80.6 0.45 39.3 87.3
    30wt%SiO2-1wt%NG/PEG 200-20℃ 17.3 51.4 2.4 680.8 283.7
    30wt%SiO2-1wt%NG/PEG 200-40℃ 17.9 99 1.2 220 183.3
    30wt%SiO2-1wt%NG/PEG 200-60℃ 24.1 150.1 0.8 79.5 99.4
    30wt%SiO2-3wt%NG/PEG 200-20℃ 32 98.6 3 801 267
    30wt%SiO2-3wt%NG/PEG 200-40℃ 40 137 2.4 420.3 175.1
    30wt%SiO2-3wt%NG/PEG 200-60℃ 52.1 235.1 1.5 140.1 93.4
    30wt%SiO2-1wt%ND/PEG 200-20℃ 9.8 33.2 2.7 858.6 318
    30wt%SiO2-1wt%ND/PEG 200-40℃ 15.1 63.2 2.2 531.5 241.6
    30wt%SiO2-1wt%ND/PEG 200-60℃ 22 82.4 2.5 372.6 149
    30wt%SiO2-3wt%ND/PEG 200-20℃ 16.6 71 6 1679 279.8
    30wt%SiO2-3wt%ND/PEG 200-40℃ 27 107 4.2 798 190
    30wt%SiO2-3wt%ND/PEG 200-60℃ 30 140.9 3.1 377.7 121.8
    下载: 导出CSV
  • [1] GÜRGEN S, KUŞHAN M C, LI W. Shear thickening fluids in protective applications: A review[J]. Progress in Polymer Science,2017,75:48-72. doi: 10.1016/j.progpolymsci.2017.07.003
    [2] FREUNDLICH H, RÖDER H. Dilatancy and its relation to thixotropy[J]. Transactions of the Faraday Society,1938,34(1):308-316.
    [3] BARNES H. Shear-thickening (“Dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids[J]. Journal of Rheology,1989,33(2):329-366. doi: 10.1122/1.550017
    [4] ZHANG S, WANG S, WANG Y, et al. Conductive shear thickening gel/polyurethane sponge: A flexible human motion detection sensor with excellent safeguarding perfor-mance[J]. Composites Part A: Applied Science and Manufacturing,2018,112:197-206. doi: 10.1016/j.compositesa.2018.06.007
    [5] SEN S, JAMAL M N B, SHAW A, et al. Numerical investigation of ballistic performance of shear thickening fluid (STF)-Kevlar composite[J]. International Journal of Mechanical Sciences,2019,164:105174. doi: 10.1016/j.ijmecsci.2019.105174
    [6] SANTOS T F, SANTOS C M S, AQUINO M S, et al. Influence of silane coupling agent on shear thickening fluids (STF) for personal protection[J]. Journal of Materials Research and Technology,2019,8(5):4032-4039. doi: 10.1016/j.jmrt.2019.07.013
    [7] MAWKHLIENG U, MAJUMDAR A. Deconstructing the role of shear thickening fluid in enhancing the impact resistance of high-performance fabrics[J]. Composites Part B: Engineering,2019,175:107167.
    [8] CAO S, HE Q, PANG H, et al. Stress relaxation in the transition from shear thinning to shear jamming in shear thickening fluid[J]. Smart Materials and Structures,2018,27(8):085013. doi: 10.1088/1361-665X/aacbf8
    [9] HADDE E K, CHEN J. Shear and extensional rheological characterization of thickened fluid for dysphagia management[J]. Journal of Food Engineering,2019,245:18-23. doi: 10.1016/j.jfoodeng.2018.10.007
    [10] LIU M, JIAN W, WANG S, et al. Shear thickening fluid with tunable structural colors[J]. Smart Materials and Structures,2018,27(9):095012. doi: 10.1088/1361-665X/aad587
    [11] CHEN K, WANG Y, XUAN S, et al. A hybrid molecular dynamics study on the non-Newtonian rheological behaviors of shear thickening fluid[J]. Journal of Colloid and Interface Science,2017,497:378-384. doi: 10.1016/j.jcis.2017.03.038
    [12] GE J, TAN Z, LI W, et al. The rheological properties of shear thickening fluid reinforced with SiC nanowires[J]. Results in Physics,2017,7:3369-3372. doi: 10.1016/j.rinp.2017.08.065
    [13] GONG X, CHEN Q, LIU M, et al. Squeeze flow behavior of shear thickening fluid under constant volume[J]. Smart Materials and Structures,2017,26(6):065017. doi: 10.1088/1361-665X/aa6ef0
    [14] GüRGEN S, LI W, KUŞHAN M C. The rheology of shear thickening fluids with various ceramic particle additives[J]. Materials & Design,2016,104:312-319.
    [15] GÜRGEN S, KUŞHAN M C. The ballistic performance of aramid based fabrics impregnated with multi-phase shear thickening fluids[J]. Polymer Testing,2017,64:296-306. doi: 10.1016/j.polymertesting.2017.11.003
    [16] GÜRGEN S, SOFUOĞLU M A. Experimental investigation on vibration characteristics of shear thickening fluid filled CFRP tubes[J]. Composite Structures,2019,226:111236. doi: 10.1016/j.compstruct.2019.111236
    [17] LAHA A, MAJUMDAR A. Shear thickening fluids using silica-halloysite nanotubes to improve the impact resistance of p-aramid fabrics[J]. Applied Clay Science,2016,132-133:468-474. doi: 10.1016/j.clay.2016.07.017
    [18] LIU M, CHEN Q, WANG S, et al. PVP immobilized SiO2 nanospheres for high-performance shear thickening fluid[J]. Journal of Nanoparticle Research,2017,19(7):234. doi: 10.1007/s11051-017-3911-x
    [19] LI S, WANG J, CAI W, et al. Effect of acid and temperature on the discontinuous shear thickening phenomenon of silica nanoparticle suspensions[J]. Chemical Physics Letters,2016,658:210-214. doi: 10.1016/j.cplett.2016.06.055
    [20] HOFFMAN R L. Discontinuous and dilatant viscosity behavior in concentrated suspensions. i. Observation of a flow instability[J]. Transactions of the Society of Rheology,1972,16(1):155-173. doi: 10.1122/1.549250
    [21] BRADY J F, BOSSIS G. The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation[J]. Journal of Fluid Mechanics,1985,155:105. doi: 10.1017/S0022112085001732
    [22] HEAD D A, AJDARI A, CATES M E. Jamming, hysteresis, and oscillation in scalar models for shear thickening[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics,2001,64(6):061509.
    [23] LOOTENS D, VAN DAMME H, HÉBRAUD P. Giant stress fluctuations at the jamming transition[J]. Physical Review Letters,2003,90(17):178301. doi: 10.1103/PhysRevLett.90.178301
    [24] DONEV A, TORQUATO S, STILLINGER F H, et al. Comment on "Jamming at zero temperature and zero applied stress: The epitome of disorder"[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics,2004,70(4):043301.
    [25] ANDREOTTI B, BARRAT J L, HEUSSINGER C. Shear flow of non-Brownian suspensions close to jamming[J]. Physical Review Letters,2012,109(10):105901. doi: 10.1103/PhysRevLett.109.105901
    [26] SETO R, MARI R, MORRIS J F, et al. Discontinuous shear thickening of frictional hard-sphere suspensions[J]. Physical Review Letters,2013,111(21):218301. doi: 10.1103/PhysRevLett.111.218301
    [27] MELROSE J R, BALL R C. Continuous shear thickening transitions in model concentrated colloids—The role of interparticle forces[J]. Journal of Rheology,2004,48(5):937. doi: 10.1122/1.1784783
    [28] CATHERALL A A, MELROSE J R, BALL R C. Shear thickening and order-disorder effects in concentrated colloids at high shear rates[J]. Journal of Rheology,2000,44(1):1-25. doi: 10.1122/1.551072
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  1465
  • HTML全文浏览量:  627
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-13
  • 修回日期:  2021-06-20
  • 录用日期:  2021-06-21
  • 网络出版日期:  2021-07-02
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回