留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MoS2/MXene纳米复合物的研究进展

谢杭明 吴汉卿 何志伟 孔哲

谢杭明, 吴汉卿, 何志伟, 等. MoS2/MXene纳米复合物的研究进展[J]. 复合材料学报, 2022, 39(3): 1005-1016. doi: 10.13801/j.cnki.fhclxb.20210701.001
引用本文: 谢杭明, 吴汉卿, 何志伟, 等. MoS2/MXene纳米复合物的研究进展[J]. 复合材料学报, 2022, 39(3): 1005-1016. doi: 10.13801/j.cnki.fhclxb.20210701.001
XIE Hangmin, WU Hanqing, HE Zhiwei, et al. Research progress in MoS2/MXene nanocomposites[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1005-1016. doi: 10.13801/j.cnki.fhclxb.20210701.001
Citation: XIE Hangmin, WU Hanqing, HE Zhiwei, et al. Research progress in MoS2/MXene nanocomposites[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1005-1016. doi: 10.13801/j.cnki.fhclxb.20210701.001

MoS2/MXene纳米复合物的研究进展

doi: 10.13801/j.cnki.fhclxb.20210701.001
基金项目: 国家自然科学基金(51803043);杭州电子科技大学科研启动基金(KYS205618119)
详细信息
    通讯作者:

    何志伟,博士,副研究员,硕士生导师,研究方向为电子信息材料、功能高分子材料等 E-mail:zhiwei.he@hdu.edu.cn

  • 中图分类号: TB333

Research progress in MoS2/MXene nanocomposites

  • 摘要: 与单一的二维材料MoS2和MXene相比,MoS2/MXene纳米复合物具有优异且稳定的物理化学性能,受到了国内外研究者的广泛关注。本论文对MoS2/MXene纳米复合物的最新研究现状进行了综述。首先,阐述MoS2/MXene纳米复合物的制备方法及其优缺点,包括水热法、插层法和热退火法等。其次,介绍MoS2/MXene纳米复合物在各领域中的应用,包括储能、催化、传感器等。最后,对MoS2/MXene纳米复合物的未来发展和应用进行了展望。

     

  • 图  1  利用水热法制备MoS2/MXene纳米复合物示意图[20]

    Figure  1.  Schematic illustration of preparation of MoS2/MXene nanocomposite via a hydrothermal process[20]

    图  2  利用插层法制备MoS2/MXene纳米复合物示意图[44]

    Figure  2.  Schematic illustration of preparation of MoS2/MXene nanocomposite via an intercalation process[44]

    图  3  基于热退火的MoS2/MXene复合物合成策略[50]

    Figure  3.  Synthesis strategy of MoS2/MXene composites based on thermal annealing[50]

    表  1  MoS2/MXene纳米复合物制备方法的优缺点

    Table  1.   Advantages and disadvantages of preparation methods for MoS2/MXene nanocomposites

    Preparation methodsAdvantagesDisadvantagesRef.
    Hydrothermal Simple process (one-step hydrothermal method),
    3D structure (MoS2 nanoflakes high crystallinity and have abundant edges)
    Long cycle (hydrothermal treatment requires reaction at 200℃ for at least 18 hours), residue of by-products (oxidation products of MXene and the precursor of MoS2) [8, 13-14, 16-17, 20-42]
    Magneto-hydrothermal Obtain 1T-MoS2 (the conductivity is about 105 times that of 2H phase) Equipment dependence (an instrument that produces magnetic fields is required) [43]
    Intercalation Simple operation with mixing and filtration, easy control of components and low cost Single structures, follow-up treatment like exfoliation process and surface modification [44-48]
    Thermal annealing High purity and good quality (after annealing, ammonium tetrathiomolybdate (ATM) will be converted into MoS2 and some gases like NH3 and H2S) High energy consumption (freeze drying before annealing, annealed at 400℃ for 3 h under a mixture gas of argon and hydrogen atmosphere) [49-52]
    Solid state sintering Easy operation and high purity (just calcine the mixture of ATM and MXene) High energy consumption (calcined at 450℃ and kept standing for 4 h in an
    atmosphere-protected tube furnace)
    [53]
    In situ sulfidation Simple, stable (MoS2
    combines with
    MXene host through strong covalent bond: Mo—S)
    Limitation (MXene is the source of molybdenum), high preparation conditions (heated under Ar flow at 500℃ for 4 h) [54-56]
    Microwave-assisted
    growth
    Simple process, less time-consuming (heated at the desired temperature for 2 h) Equipment dependence (need special microwave synthesizer) [57]
    Gamma radiation
    strategy
    Fewer toxic chemicals and reaction at room temperature Equipment dependence and high cost (Gamma ray sources and related devices are required) [58]
    Incipient wetness impregnation Excellent structures (pore volume increases due to the introduction of MoS2 into MXene layers) Complex operation and harsh conditions (calcined at 300℃ under nitrogen) [59-60]
    Chemical conversion Large-scale production, metal/semiconductor heterostructures Limitation (only MoS2/Mo2C can be prepared), complex operation and harsh conditions (thermal annealing at 840℃ under CH4 and H2 using Cu foil as a catalyst) [61-62]
    下载: 导出CSV

    表  2  MoS2/MXene纳米复合物在各领域的应用

    Table  2.   Application of MoS2/MXene nanocomposites in various fields

    Fields of applicationRef.
    Energy storage Li-ion battery [17, 22, 51, 53-54, 66]
    Li/Na-ion battery [49, 67]
    K-ion battery [24]
    Na-ion battery [25-27, 29, 45]
    Mg-ion battery [28]
    Li-S battery [16]
    Supercapacitor [23, 43-44, 48, 59]
    Catalysis Electrocatalytic hydrogen evolution [21, 31-32, 35, 50, 55-58]
    Photocatalytic hydrogen evolution [8, 14, 30, 33-34, 38, 72]
    N2 reduction reaction [37]
    Oxygen reduction reaction and
    methanol oxidation reaction
    [46]
    Hydrodesulfurization [60]
    Photocatalytic degradation of ranitidine [13]
    Other applications Antibacterial [39]
    Microwave absorbing [20, 40, 42]
    Detection thyroxine (T4) [47]
    Detection microRNA-182 (miRNA-182) [41, 73]
    High-efficiency solar steam generation [36]
    下载: 导出CSV

    表  3  MoS2/MXene纳米复合物在储能领域中的应用

    Table  3.   Application of MoS2/MXene nanocomposites in energy storage field

    Energy storageNanocompositesPreparation methodsRef.
    Li-ion battery V4C3/MoS2-C(C doped) Thermal annealing [51]
    MoS2/Mo2TiC2 In situ sulfidation [54]
    MoS2/Ti3C2 Hydrothermal [22]
    MoS2/Ti3C2 [66]
    MoS2/Ti3C2 Solid state sintering [53]
    MoS2/Ti3C2 Hydrothermal [17]
    Li/Na-ion battery MoS2/Ti2CTx [67]
    MoS2/Ti3C2 Thermal annealing [49]
    K-ion battery MoS2/Ti3C2 Hydrothermal [24]
    Na-ion battery MoS2/Ta4C3 Hydrothermal [25]
    MoS2/Ti3C2 Intercalation [45]
    MoS2/m-C@a-C@Ti3C2 Hydrothermal [26]
    MoS2/Ti3C2 Hydrothermal [27]
    MoS2/Nb2CTx@C Hydrothermal [29]
    Mg-ion battery MoS2/Ti3C2 Hydrothermal [28]
    Li-S battery 1T-2H MoS2-C/Ti3C2 Hydrothermal [16]
    Supercapacitor MoS2/Ti3C2 Incipient wetness impregnation [59]
    MoS2/Ti3C2 Intercalation [48]
    MoS2/Ti3C2 Hydrothermal [23]
    MoS2/Ti3C2 Intercalation [44]
    1T-MoS2/Ti3C2 Magneto-hydrothermal [43]
    下载: 导出CSV

    表  4  MoS2/MXene复合物在催化领域中的应用

    Table  4.   Application of MoS2/MXene nanocomposites in catalysis

    CatalysisNanocompositesPreparationRef.
    Electrocatalytic hydrogen evolution MoS2/Ti3C2 Microwave-assisted growth [57]
    MoS2/Ti3C2 Hydrothermal [31]
    MoS2/Ti3C2 Gamma radiation strategy [58]
    1T'-MoS2/Ti3C2 Hydrothermal [32]
    MoS2/Ti3C2 Thermal annealing [50]
    MoS2/Mo2CTx In situ sulfidation [55]
    MoS2/Nb2CTx Hydrothermal [21]
    MoS2/Mo2CTx In situ sulfidation [56]
    MoS2/Mo2CTx Hydrothermal [35]
    Co-MoS2/Mo2CTx Thermal annealing [52]
    Photocatalytic hydrogen evolution CdS-MoS2-Ti3C2 Hydrothermal [30]
    MoS2/Ti3C2 Hydrothermal [14, 38, 72]
    MoxS@TiO2@Ti3C2 Hydrothermal [33]
    1T-MoS2/Ti3C2/TiO2 Hydrothermal [8]
    MoS2/Ti3C2/TiO2 Hydrothermal [34]
    N2 reduction reaction 1T-MoS2/Ti3C2 Intercalation [37]
    Oxygen reduction reaction
    and methanol oxidation reaction
    MoS2QDs@Ti3C2TxQDs@MMWCNTs Intercalation [46]
    Hydrodesulfurization Ni-MoS2/Ti3C2 Incipient wetness impregnation [60]
    Photocatalytic degradation of ranitidine MoS2/Ti3C2 Hydrothermal [13]
    Notes: QDs—Quantum dots; MMWCNTS—Multi-walled carbon nanotube.
    下载: 导出CSV

    表  5  MoS2/MXene纳米复合物的其他应用

    Table  5.   Research achievements of MoS2/MXene nanocomposites in other fields

    Other applicationsNanocompositesPreparationPerformanceRef.
    Antibacterial MoS2/Ti3C2 Hydrothermal [39]
    Microwave absorbing MoS2/Ti3C2(4 mm) Hydrothermal EAB (6-10.8 GHz), RL (−51 dB) [40]
    MoS2/Ti3C2(2 mm) Hydrothermal EAB (4.32 GHz), RL (−46.72 dB) [20]
    CF@MXene@MoS2
    (3.5 mm)
    Hydrothermal EAB (10.4-18.0 GHz), RL (−61.51 dB) [42]
    Detection (T4) MoS2/Ti3C2 Intercalation LOD (3.9×10−10 kg/m3) [47]
    Detection (miRNA-182) MoS2/Ti3C2Tx@AuNPs Hydrothermal Linear detection window
    (1×10−14−1×10−6 mol/m3),
    LOD (6.61×10−15 mol/m3)
    [73]
    MoS2/Ti3C2Tx@AuNPs Hydrothermal Linear detection window
    (1×10−12−1×10−7 mol/m3),
    LOD (4.3×10−13 mol/m3)
    [41]
    High-efficiency solar
    steam generation
    MoS2/Ti3C2 Thermal annealing Evaporation rate (1.36 kg/(m2·h)),
    conversion efficiency(87.2%)
    [36]
    Notes: EAB—Effective absorption bandwidth; RL—Reflection loss; LOD—Limit of detection; NPs—Nanoparticles.
    下载: 导出CSV
  • [1] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th Anniversary article: MXenes: A new family of two-simensional materials[J]. Advanced Materials,2014,26(7):992-1005. doi: 10.1002/adma.201304138
    [2] BOOTA M, GOGOTSI Y. MXene—conducting polymer asymmetric pseudocapacitors[J]. Advanced Energy Materials,2019,9(7):1802917. doi: 10.1002/aenm.201802917
    [3] WANG S, MA Z, LÜ Q F, et al. Two-dimensional Ti3C2Tx/polyaniline nanocomposite from the decoration of small-sized graphene nanosheets: Promoted pseudocapacitive electrode performance for supercapacitors[J]. ChemElectroChem,2019,6(10):2748-2754. doi: 10.1002/celc.201900433
    [4] WU W, NIU D, ZHU J, et al. Organ-like Ti3C2 Mxenes/polyaniline composites by chemical grafting as high-performance supercapacitors[J]. Journal of Electroanalytical Chemistry,2019,847:113203. doi: 10.1016/j.jelechem.2019.113203
    [5] NATU V, HART J L, SOKOL M, et al. Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions[J]. Angewandte Chemie International Edition,2019,58(36):12655-12660. doi: 10.1002/anie.201906138
    [6] GAO L, LI C, HUANG W, et al. MXene/polymer membranes: Synthesis, properties, and emerging applications[J]. Chemistry of Materials,2020,32(5):1703-1747. doi: 10.1021/acs.chemmater.9b04408
    [7] ZHAN X, SI C, ZHOU J, et al. MXene and MXene-based composites: Synthesis, properties and environment-related applications[J]. Nanoscale Horizons,2020,5(2):235-258. doi: 10.1039/C9NH00571D
    [8] LI Y, YANG S, LIANG Z, et al. 1T-MoS2 nanopatch/Ti3C2 MXene/TiO2 nanosheet hybrids for efficient photo-catalytic hydrogen evolution[J]. Materials Chemistry Frontiers,2019,3(12):2673-2680. doi: 10.1039/C9QM00608G
    [9] MANZELI S, OVCHINNIKOV D, PASQUIER D, et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials,2017,2(8):17033. doi: 10.1038/natrevmats.2017.33
    [10] JAYABAL S, SARANYA G, WU J, et al. Understanding the high-electrocatalytic performance of two-dimensional MoS2 nanosheets and their composite materials[J]. Jour-nal of Materials Chemistry A,2017,5(47):24540-24563. doi: 10.1039/C7TA08327K
    [11] LI C, WU G, WANG C, et al. Tuning electronic and transport properties of MoS2/Ti2C heterostructure by external strain and electric field[J]. Computational Materials Science,2018,153:417-423. doi: 10.1016/j.commatsci.2018.07.010
    [12] ZHAO P, JIN H, LV X, et al. Modified MXene: Promising electrode materials for constructing ohmic contacts with MoS2 for electronic device applications[J]. Physical Che-mistry Chemical Physics,2018,20(24):16551-16557. doi: 10.1039/C8CP02300J
    [13] ZOU X, ZHAO X, ZHANG J, et al. Photocatalytic degradation of ranitidine and reduction of nitrosamine dimethylamine formation potential over MXene–Ti3C2/MoS2 under visible light irradiation[J]. Journal of Hazardous Materials,2021,413:125424. doi: 10.1016/j.jhazmat.2021.125424
    [14] ZHANG J, XING C, SHI F. MoS2/Ti3C2 heterostructure for efficient visible-light photocatalytic hydrogen generation[J]. International Journal of Hydrogen Energy,2020,45(11):6291-6301. doi: 10.1016/j.ijhydene.2019.12.109
    [15] YOU J, SI C, ZHOU J, et al. Contacting MoS2 to MXene: Vanishing p-type Schottky barrier and enhanced hydrogen evolution catalysis[J]. The Journal of Physical Chemistry C,2019,123(6):3719-3726. doi: 10.1021/acs.jpcc.8b12469
    [16] ZHANG Y, MU Z, YANG C, et al. Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials,2018,28:1707578. doi: 10.1002/adfm.201707578
    [17] ZHENG M, GUO R, LIU Z, et al. MoS2 intercalated p-Ti3C2 anode materials with sandwich-like three dimensional conductive networks for lithium-ion batteries[J]. Journal of Alloys and Compounds,2018,735:1262-1270. doi: 10.1016/j.jallcom.2017.11.250
    [18] SONG D X, XIE L, ZHANG Y F, et al. Multilayer ion load and diffusion on TMD/MXene heterostructure anodes for alkali-ion batteries[J]. ACS Applied Energy Materials,2020,3(8):7699-7709. doi: 10.1021/acsaem.0c01110
    [19] WANG W, ZHANG K, QIAO Z, et al. Influence of surfactants on the synthesis of MoS2 catalysts and their activities in the hydrodeoxygenation of 4-methylphenol[J]. Industrial & Engineering Chemistry Research,2014,53(25):10301-10309.
    [20] LI X, WEN C, YANG L, et al. Enhanced visualizing charge distribution of 2D/2D MXene/MoS2 heterostructure for excellent microwave absorption performance[J]. Journal of Alloys and Compounds,2021,869:159365. doi: 10.1016/j.jallcom.2021.159365
    [21] HU L, SUN Y, SHIJING G, et al. Experimental and theoretical investigation on MoS2/MXene heterostructure as an efficient electrocatalyst for hydrogen evolution in both acidic and alkaline media[J]. New Journal of Chemistry,2020,44(19):7902-7911. doi: 10.1039/D0NJ00956C
    [22] DU G, TAO M, GAO W, et al. Preparation of MoS2/Ti3C2Tx composite as anode material with enhanced sodium/lithium storage performance[J]. Inorganic Chemistry Frontiers,2019,6(1):117-125. doi: 10.1039/C8QI01081A
    [23] HOU W, SUN Y, ZHANG Y, et al. Mixed-dimensional heterostructure of few-layer MXene based vertical aligned MoS2 nanosheets for enhanced supercapacitor performance[J]. Journal of Alloys and Compounds,2021,859:157797. doi: 10.1016/j.jallcom.2020.157797
    [24] LI J, RUI B, WEI W, et al. Nanosheets assembled layered MoS2/MXene as high performance anode materials for potassium ion batteries[J]. Journal of Power Sources,2020,449:227481. doi: 10.1016/j.jpowsour.2019.227481
    [25] LIU M C, ZHANG Y S, ZHANG B M, et al. Large interlayer spacing 2D Ta4C3 matrix supported 2D MoS2 nanosheets: A 3D heterostructure composite towards high-performance sodium ions storage[J]. Renewable Energy,2021,169:573-581. doi: 10.1016/j.renene.2021.01.051
    [26] SUN J, JIAO S, LIAN G, et al. Hierarchical MoS2/m-C@a-C@Ti3C2 nanohybrids as superior electrodes for enhanced sodium storage and hydrogen evolution reaction[J]. Chemical Engineering Journal,2021,421(9):129680.
    [27] WU Y, NIE P, JIANG J, et al. MoS2-nanosheet decorated 2D titanium carbide (MXene) as high-performance anodes for sodium-ion batteries[J]. ChemElectroChem,2017,4(6):1560-1565. doi: 10.1002/celc.201700060
    [28] XU M, BAI N, LI H X, et al. Synthesis of MXene-supported layered MoS2 with enhanced electrochemical performance for Mg batteries[J]. Chinese Chemical Letters,2018,29(8):1313-1316. doi: 10.1016/j.cclet.2018.04.023
    [29] YUAN Z, WANG L, LI D, et al. Carbon-reinforced Nb2CTx MXene/MoS2 nanosheets as a superior rate and high-capacity anode for sodium-ion batteries[J]. ACS Nano,2021,15(4):7439-7450. doi: 10.1021/acsnano.1c00849
    [30] CHEN R, WANG P, CHEN J, et al. Synergetic effect of MoS2 and MXene on the enhanced H2 evolution performance of CdS under visible light irradiation[J]. Applied Surface Science,2019,473:11-19. doi: 10.1016/j.apsusc.2018.12.071
    [31] HUANG L, AI L, WANG M, et al. Hierarchical MoS2 nanosheets integrated Ti3C2 MXenes for electrocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy,2019,44(2):965-976. doi: 10.1016/j.ijhydene.2018.11.084
    [32] LI X, LV X, SUN X, et al. Edge-oriented, high-percentage 1T'-phase MoS2 nanosheets stabilize Ti3C2 MXene for efficient electrocatalytic hydrogen evolution[J]. Applied Catalysis B-Environmental,2021,284:119708. doi: 10.1016/j.apcatb.2020.119708
    [33] LI Y, DING L, LIANG Z, et al. Synergetic effect of defects rich MoS2 and Ti3C2 MXene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2[J]. Chemical Engineering Journal,2020,383:123178. doi: 10.1016/j.cej.2019.123178
    [34] LI Y, YIN Z, JI G, et al. 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity[J]. Applied Catalysis B-Environmental,2019,246:12-20. doi: 10.1016/j.apcatb.2019.01.051
    [35] REN J, ZONG H, SUN Y, et al. 2D organ-like molybdenum carbide (MXene) coupled with MoS2 nanoflowers enhances catalytic activity in the hydrogen evolution reaction[J]. CrystEngComm,2020,22(8):1395-1403. doi: 10.1039/C9CE01777A
    [36] XU R, WEI N, LI Z, et al. Construction of hierarchical 2D/2D Ti3C2/MoS2 nanocomposites for high-efficiency solar steam generation[J]. Journal of Colloid and Interface Science,2021,584:125-133. doi: 10.1016/j.jcis.2020.09.052
    [37] XU X, SUN B, LIANG Z, et al. High-performance electrocatalytic conversion of N2 to NH3 using 1T-MoS2 anchored on Ti3C2 MXene under ambient conditions[J]. ACS Applied Materials & Interfaces,2020,12(23):26060-26067.
    [38] YAO Z, SUN H, SUI H, et al. 2D/2D heterojunction of R-scheme Ti3C2 MXene/MoS2 nanosheets for enhanced photocatalytic performance[J]. Nanoscale Research Letters,2020,15(1):78. doi: 10.1186/s11671-020-03314-z
    [39] ALIMOHAMMADI F, SHARIFIAN G H M, ATTANAYAKE N H, et al. Antimicrobial properties of 2D MnO2 and MoS2 nanomaterials vertically aligned on graphene materials and Ti3C2 MXene[J]. Langmuir,2018,34(24):7192-7200. doi: 10.1021/acs.langmuir.8b00262
    [40] HASSAN A, ASLAM M A, BILAL M, et al. Modulating dielectric loss of MoS2@Ti3C2Tx nanoarchitectures for electromagnetic wave absorption with radar cross section reduction performance verified through simulations[J]. Ceramics International,2021,47(14):20706-20716. doi: 10.1016/j.ceramint.2021.04.014
    [41] LIU L, WEI Y, JIAO S, et al. A novel label-free strategy for the ultrasensitive miRNA-182 detection based on MoS2/Ti3C2 nanohybrids[J]. Biosensors & Bioelectronics,2019,137:45-51.
    [42] WANG J, LIU L, JIAO S, et al. Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption[J]. Advanced Functional Materials,2020,30(45):2002595. doi: 10.1002/adfm.202002595
    [43] WANG X, LI H, LI H, et al. 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance[J]. Advanced Functional Materials,2020,30(15):0190302. doi: 10.1002/adfm.201910302
    [44] KIRUBASANKAR B, NARAYANASAMY M, YANG J, et al. Construction of heterogeneous 2D layered MoS2/MXene nanohybrid anode material via interstratification process and its synergetic effect for asymmetric supercapacitors[J]. Applied Surface Science,2020,534:147644. doi: 10.1016/j.apsusc.2020.147644
    [45] MA K, DONG Y, JIANG H, et al. Densified MoS2/Ti3C2 films with balanced porosity for ultrahigh volumetric capacity sodium-ion battery[J]. Chemical Engineering Journal,2021,413:127479. doi: 10.1016/j.cej.2020.127479
    [46] YANG X, JIA Q, DUAN F, et al. Multiwall carbon nanotubes loaded with MoS2 quantum dots and MXene quantum dots: Non–Pt bifunctional catalyst for the methanol oxidation and oxygen reduction reactions in alkaline solution[J]. Applied Surface Science,2019,464:78-87. doi: 10.1016/j.apsusc.2018.09.069
    [47] KASHEFI-KHEYRABADI L, KOYAPPAYIL A, KIM T, et al. A MoS2@Ti3C2Tx MXene hybrid-based electrochemical aptasensor (MEA) for sensitive and rapid detection of thyroxine[J]. Bioelectrochemistry,2021,137:107674. doi: 10.1016/j.bioelechem.2020.107674
    [48] CHEN X, WANG S, SHI J, et al. Direct laser etching free-standing MXene-MoS2 film for highly flexible micro-supercapacitor[J]. Advanced Materials Interfaces,2019,6(22):1901160. doi: 10.1002/admi.201901160
    [49] MA K, JIANG H, HU Y, et al. 2D nanospace confined synthesis of pseudocapacitance-dominated MoS2-in-Ti3C2 superstructure for ultrafast and stable Li/Na-ion batteries[J]. Advanced Functional Materials,2018,28(40):1804306. doi: 10.1002/adfm.201804306
    [50] LIU J, LIU Y, XU D, et al. Hierarchical “nanoroll” like MoS2/Ti3C2Tx hybrid with high electrocatalytic hydrogen evolution activity[J]. Applied Catalysis B-Environmental,2019,241:89-94. doi: 10.1016/j.apcatb.2018.08.083
    [51] BAI J, ZHAO B, LIN S, et al. Construction of hierarchical V4C3-MXene/MoS2/C nanohybrids for high rate lithium-ion batteries[J]. Nanoscale,2020,12(2):1144-1154. doi: 10.1039/C9NR07646H
    [52] LIANG J, DING C, LIU J, et al. Heterostructure engineering of Co-doped MoS2 coupled with Mo2CTx MXene for enhanced hydrogen evolution in alkaline media[J]. Nanoscale,2019,11(22):10992-11000. doi: 10.1039/C9NR02085C
    [53] SHEN C, WANG L, ZHOU A, et al. MoS2-decorated Ti3C2 MXene nanosheet as anode material in lithium-ion batteries[J]. Journal of the Electrochemical Society,2017,164(12):2654-2659. doi: 10.1149/2.1421712jes
    [54] CHEN C, XIE X, ANASORI B, et al. MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries[J]. Angewandte Chemie International Edition,2018,57(7):1846-1850. doi: 10.1002/anie.201710616
    [55] BENCHAKAR M, NATU V, ELMELEGY T A, et al. On a two-dimensional MoS2/Mo2CTx hydrogen evolution catalyst obtained by the topotactic sulfurization of Mo2CTx MXene[J]. Journal of the Electrochemical Society,2020,167(12):124507. doi: 10.1149/1945-7111/abad6e
    [56] LIM K R G, HANDOKO A D, JOHNSON L R, et al. 2H-MoS2 on Mo2CTx MXene nanohybrid for efficient and durable electrocatalytic hydrogen evolution[J]. ACS Nano,2020,14(11):16140-16155. doi: 10.1021/acsnano.0c08671
    [57] ATTANAYAKE N H, ABEYWEERA S C, THENUWARA A C, et al. Vertically aligned MoS2 on Ti3C2 (MXene) as an improved HER catalyst[J]. Journal of Materials Chemistry A,2018,6(35):16882-16889. doi: 10.1039/C8TA05033C
    [58] LI S, QUE X, CHEN X, et al. One-step synthesis of modified Ti3C2 MXene-supported amorphous molybdenum sulfide electrocatalysts by a facile Gamma radiation strategy for efficient hydrogen evolution reaction[J]. ACS Applied Energy Materials,2020,3(11):10882-10891. doi: 10.1021/acsaem.0c01900
    [59] CHANDRAN M, THOMAS A, RAVEENDRAN A, et al. MoS2 confined MXene heterostructures as electrode material for energy storage application[J]. Journal of Energy Storage,2020,30:101446. doi: 10.1016/j.est.2020.101446
    [60] VINOBA M, NAVVAMANI R, AL-SHEEHA H. Epitaxial synthesis of Ni–MoS2/Ti3C2Tx MXene heterostructures for hydrodesulfurization[J]. RSC Advances,2020,10(21):12308-12317. doi: 10.1039/D0RA01158D
    [61] CHOI S, KIM Y J, JEON J, et al. Scalable two-dimensional lateral metal/semiconductor junction fabricated with selective synthetic integration of transition-metal-carbide (Mo2C)/-dichalcogenide (MoS2)[J]. ACS Applied Materials & Interfaces,2019,11(50):47190-47196.
    [62] JEON J, PARK Y, CHOI S, et al. Epitaxial synthesis of molybdenum carbide and formation of a Mo2C/MoS2 hybrid structure via chemical conversion of molybdenum disulfide[J]. ACS Nano,2018,12(1):338-346. doi: 10.1021/acsnano.7b06417
    [63] WANG T, CHEN S, PANG H, et al. MoS2-based nanocomposites for electrochemical energy storage[J]. Advanced Science,2017,4(2):1600289. doi: 10.1002/advs.201600289
    [64] WU Y, YU Y. 2D material as anode for sodium ion batteries: Recent progress and perspectives[J]. Energy Storage Materials,2019,16:323-343. doi: 10.1016/j.ensm.2018.05.026
    [65] HAN Y, GE Y, CHAO Y, et al. Recent progress in 2D materials for flexible supercapacitors[J]. Journal of Energy Chemistry,2018,27(1):57-72. doi: 10.1016/j.jechem.2017.10.033
    [66] SHAO Y, GONG P, PAN H, et al. H-/dT-MoS2-on-MXene heterostructures as promising 2D anode materials for lithium-ion batteries: Insights from first principles[J]. Advanced Theory Simulations,2019,2(8):1900045. doi: 10.1002/adts.201900045
    [67] LI J, PENG Q, ZHOU J, et al. MoS2/Ti2CT2 (T = F, O) heterostructures as promising flexible anodes for lithium/sodium ion batteries[J]. Journal of the Physical Chemistry C,2019,123(18):11493-11499. doi: 10.1021/acs.jpcc.9b01648
    [68] WANG H, WU Y, YUAN X, et al. Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State of the art progresses and challenges[J]. Advanced Materials,2018,30(12):1704561. doi: 10.1002/adma.201704561
    [69] GUPTA U, RAO C N R. Hydrogen generation by water splitting using MoS2 and other transition metal dichalcogenides[J]. Nano Energy,2017,41:49-65. doi: 10.1016/j.nanoen.2017.08.021
    [70] GAO M R, CHAN M K Y, SUN Y. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production[J]. Nature Communications,2015,6(1):7493. doi: 10.1038/ncomms8493
    [71] XU X, GE X, LIU X, et al. Two-dimensional M2CO2/MoS2 (M = Ti, Zr and Hf) Van Der Waals heterostructures for overall water splitting: A density functional theory study[J]. Ceramics International,2020,46(9):13377-13384. doi: 10.1016/j.ceramint.2020.02.119
    [72] JIN S, HU Q, WANG L, et al. Comment on “MoS2/Ti3C2 heterostructure for efficient visible-light photocatalytic hydrogen generation”[J]. International Journal of Hydrogen Energy,2020,45(24):13559-13562. doi: 10.1016/j.ijhydene.2020.03.065
    [73] LIU L, SHANGGUAN C, GUO J, et al. Ultrasensitive SERS detection of cancer-related miRNA-182 by MXene/MoS2@AuNPs with controllable morphology and optimized self-internal standards[J]. Advanced Optical Materials,2020,8(23):2001214. doi: 10.1002/adom.202001214
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  2073
  • HTML全文浏览量:  743
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-31
  • 修回日期:  2021-06-22
  • 录用日期:  2021-06-27
  • 网络出版日期:  2021-07-01
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回