留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维桥联效应下复合材料层合板的屈曲及分层扩展模拟

黄勇 宁志华

黄勇, 宁志华. 纤维桥联效应下复合材料层合板的屈曲及分层扩展模拟[J]. 复合材料学报, 2022, 39(5): 2504-2514. doi: 10.13801/j.cnki.fhclxb.20210622.004
引用本文: 黄勇, 宁志华. 纤维桥联效应下复合材料层合板的屈曲及分层扩展模拟[J]. 复合材料学报, 2022, 39(5): 2504-2514. doi: 10.13801/j.cnki.fhclxb.20210622.004
HUANG Yong, NING Zhihua. Simulation of buckling and delamination propagation of composite laminates with fiber bridging[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2504-2514. doi: 10.13801/j.cnki.fhclxb.20210622.004
Citation: HUANG Yong, NING Zhihua. Simulation of buckling and delamination propagation of composite laminates with fiber bridging[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2504-2514. doi: 10.13801/j.cnki.fhclxb.20210622.004

纤维桥联效应下复合材料层合板的屈曲及分层扩展模拟

doi: 10.13801/j.cnki.fhclxb.20210622.004
基金项目: 广东省自然科学基金(2018A0303130128);广东省普通高校重点领域专项(2020ZDZX2044)
详细信息
    通讯作者:

    宁志华,博士,副教授,硕士生导师,研究方向为复合材料损伤与断裂分析  Email:tningzhihua@jnu.edu.cn

  • 中图分类号: TB332

Simulation of buckling and delamination propagation of composite laminates with fiber bridging

  • 摘要: 纤维增强复合材料层合板由于层间力学性能弱,容易出现分层损伤。分层的扩展往往伴随着纤维桥联效应,纤维桥联能显著增大层合板尤其是多向层合板分层扩展的阻力。考虑纤维桥联效应的三线性内聚力模型能表征分层扩展实验中断裂韧性的“R曲线”特征,比传统的双线性模型能更为准确地描述复合材料的分层扩展行为。本论文基于三线性内聚力模型,对含圆形分层复合材料层合板的轴向压缩进行数值模拟,探讨纤维桥联效应对分层扩展及后屈曲行为的影响规律。研究结果发现,纤维桥联对层合板的屈曲载荷影响较小;混合屈曲模式下,三线性模型预测的上下子板相对法向位移明显低于双线性模型;相同分层深度下,三线性模型预测的层合板后屈曲更早转变为整体屈曲模式。随着分层深度的增加,层合板的屈曲模式由局部屈曲逐步过渡为混合屈曲和整体屈曲;当分层深度较浅时,I型分层扩展占主导;随着分层深度的增加,I型分层逐渐减弱,而II型和III型分层扩展则显著增强;当分层接近板中面时,I型分层停止扩展,以II型及III型分层为主。

     

  • 图  1  内聚力单元

    Figure  1.  Cohesive element

    δn—Relative displacement in the normal direction; δs, δt—Relative displacement in the tangential direction

    图  2  双线性内聚力模型

    Figure  2.  Bilinear cohesive zone model

    σi, δi (i = n, s, t)—Traction and relative displacement in the normal and tangential directions of the cohesive element; K— Stiffness of the cohesive element; K0—Initial stiffness of the cohesive element; d—Damage coefficient; σ0, δ0—Traction and relative displacement at the initial moment of element injury; δf—Relative displacement at element failure

    图  3  传统三线性内聚力模型

    Figure  3.  Traditional trilinear cohesive zone model

    σb, δb—Traction force and relative displacement at matrix failure; G1—Fracture toughness of the matrix; G2—Fracture toughness of bridged fibers; GC—Overall fracture toughness; m—Ratio of matrix fracture toughness to overall fracture toughness; n—Ratio of bridged fibers fracture toughness to overall fracture toughness

    图  4  改进的三线性内聚力模型

    Figure  4.  Modified trilinear cohesive zone model

    图  5  含圆形分层的层合板示意图:(a) 几何模型构成;(b)边界条件

    Figure  5.  Diagram of laminates with a circular delamination: (a) Composition of the geometric model; (b) Boundary conditions

    D—Delamination depth; L, W—Length and width of finite element model; H—Thickness of finite element model; r—Radius of the initial delamination; RP-1, RP-2—Reference points for applying the load; U1, U2, U3—Displacement in three directions

    图  6  不同分层深度下两种模型预测的T700/TDE85层合板载荷-位移曲线

    Figure  6.  Force-displacement curves predicted by two models with different delamination depths for T700/TDE85 laminates

    图  7  分层深度 D/H = 0.1的T700/TDE85层合板分层扩展及屈曲:(a) 面外位移-载荷曲线;((b), (c)) 不同载荷下两种模型的屈曲模式;((d), (e)) 不同模型的分层扩展预测

    Figure  7.  Delamination growth and buckling for normalized delamination depth D/H = 0.1 of T700/TDE85 laminates: (a) Out-of-plane deflection vs. loading displacement; ((b), (c)) Buckling modes of two models under different loads; ((d), (e)) Delamination propagation predicted by different model

    图  11  分层深度D/H = 0.5的T700/TDE85层合板分层扩展及屈曲:(a) 面外位移-载荷曲线;(b) 两种模型的屈曲模式;((c), (d)) 不同模型的分层扩展预测

    Figure  11.  Delamination growth and buckling for normalized delamination depth D/H = 0.5 of T700/TDE85 laminates: (a) Out-of-plane deflection vs. loading displacement; (b) Buckling mode of two models; ((c), (d)) Delamination propagation predicted by different model

    图  8  分层深度D/H=0.25的T700/TDE85层合板分层扩展及屈曲:(a) 面外位移-载荷曲线;((b), (c)) 不同载荷下两种模型的屈曲模式;((d), (e)) 不同模型的分层扩展预测

    Figure  8.  Delamination growth and buckling for normalized delamination depth D/H=0.25 of T700/TDE85 laminates: (a) Out-of-plane deflection vs. loading displacement; ((b), (c)) Buckling modes of two models under different loads; ((d), (e)) Delamination propagation predicted by different model

    图  9  分层深度D/H=0.3的T700/TDE85层合板分层扩展及屈曲:(a) 面外位移-载荷曲线;((b), (c), (d), (e)) 不同载荷下两种模型的屈曲模式;((f), (g)) 不同模型的分层扩展预测

    Figure  9.  Delamination growth and buckling for normalized delamination depth D/H=0.3 of T700/TDE85 laminates: (a) Out-of-plane deflection vs. loading displacement; ((b), (c), (d), (e)) Buckling modes of two models under different loads; ((f), (g)) Delamination propagation predicted by different model

    图  10  分层深度D/H = 0.35的T700/TDE85层合板分层屈曲:(a) 面外位移-载荷曲线;(b) 两种模型的屈曲模式;((c), (d)) 不同模型的分层扩展预测

    Figure  10.  Delamination growth and buckling for normalized delamination depth D/H = 0.35 of T700/TDE85 laminates: (a) Out-of-plane deflection vs. loading displacement; (b) Buckling mode of two models; ((c), (d)) Delamination propagation predicted by different model

    表  1  T700/TDE85单向板力学性能参数[35]

    Table  1.   Mechanical parameters of T700/TDE85 unidirectional laminates[35]

    E11/MPaE22/MPaE33/MPaG12/MPaG13/MPaG23/MPaν12ν13ν23
    138000 10160 10160 5860 5860 4790 0.28 0.3 0.3
    Notes: Eij—Young’s modulus; Gij—Shear modulus; vij—Poisson’s ratio, where subscripts i, j denote the principal material axes.
    下载: 导出CSV

    表  2  双线性内聚力模型界面参数[35]

    Table  2.   Interface parameters of the bilinear cohesive zone model[35]

    K11/(N·mm−3)K22/(N·mm−3)K33/(N·mm−3)Nmax/MPaSmax/MPaTmax/MPaGIC/(N·mm−1)GIIC/(N·mm−1)GIIIC/(N·mm−1)α
    106 106 106 5 20 20 0.276 0.8 0.8 2
    Notes: Kij—Interface stiffness; Nmax, Smax, Tmax—Interfacial strength in longitudinal and transverse directions, respectively; GiC—Fracture toughness; α—Power exponent factor.
    下载: 导出CSV

    表  3  三线性内聚力模型界面参数

    Table  3.   Interface parameters of the trilinear cohesive zone model

    K11/(N·mm−3)K22/(N·mm−3)K33/(N·mm−3)Nmax/MPaSmax/MPaTmax/MPaGIC/(N·mm−1)GIIC/(N·mm−1)GIIIC/(N·mm−1)ασbδb
    106 106 106 5.25 21 21 0.359 1.04 1.04 2 0.2 0.11
    Notes: σb—Maximum bridging stress; δb—Initial displacement of bridge fiber damage.
    下载: 导出CSV
  • [1] 赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J]. 航空学报, 2019, 40(1):171-199.

    ZHAO Libing, GONG Yu, ZHANG Jianyu. A survey on delamination growth behavior in fiber reinforced compo-site laminates[J]. Acta Aeronautica et Astronautica Sinica,2019,40(1):171-199(in Chinese).
    [2] 王雪明, 谢富原, 李敏, 等. 热压罐成型复合材料构件分层缺陷影响因素分析[C]// 杜善义. 第十五届全国复合材料学术会议论文集(上册). 国防工业出版社, 2008: 537-541.

    WANG Xueming, XIE Fuyuan, LI Ming, et al. Factor analy-sis of delamination in composite components porduced by autoclave process[C]// DU Shanyi. Proceedings of the 15th national conference on composite materials (Volume I). National Defense Industry Press, 2008: 537-541(in Chinese).
    [3] FOOTE R M L, MAI Y W, COTTERELL B. Crack growth resistance curves in strain-softening materials[J]. Journal of the Mechanics & Physics of Solids,1986,34(6):593-607.
    [4] SMITH E. Displacement control crack-growth instability in an elastic-softening material[J]. Journal of Materials Science,1994,29(1):276-280. doi: 10.1007/BF00356604
    [5] CARPINTERI A, CADAMURO E, VENTURA G. Fiber-reinforced concrete in flexure: A cohesive/overlapping crack model application[J]. Materials and Structures,2015,48(1/2):235-247. doi: 10.1617/s11527-013-0179-1
    [6] STEPHEN S J, GETTU R, FERREIRA L E T, et al. Assessment of the toughness of fibre-reinforced concrete using the R-curve approach[J]. Sādhanā,2018,43(3):1-6.
    [7] LEI W, HUA Z, LINGYU B, et al. Effect of fiber hybridization, strain rate and W/C ratio on the impact behavior of hybrid FRC[J]. Materials,2019,12(17):2780. doi: 10.3390/ma12172780
    [8] GONG Y, ZHANG B R, HALLETT S. Delamination migration in multidirectional composite laminates under mode I quasi-static and fatigue loading[J]. Composite Structures,2018,189:160-176. doi: 10.1016/j.compstruct.2018.01.074
    [9] GONG Y, ZHANG B, MUKHOPADHYAY S, et al. Experimental study on delamination migration in multidirec-tional laminates under mode II static and fatigue loading, with comparison to mode I[J]. Composite Structures,2018,201:683-698. doi: 10.1016/j.compstruct.2018.06.081
    [10] BRUNNER A J, BLACKMAN B R K, DAVIES P. A status report on delamination resistance testing of polymer-matrix composites[J]. Engineering Fracture Mechanics,2007,75(9):2779-2794.
    [11] BRUNNER A J, BLACKMAN B R K. Delamination fracture in cross-ply laminates: What can be learned from experiment?[J]. European Structural Integrity Society,2003,32:433-444.
    [12] DE MORAIS A B, DE MOURA M F, MARQUES A T, et al. Mode-I interlaminar fracture of carbon/epoxy cross-ply composites[J]. Composites Science and Technology,2002,62(5):679-686. doi: 10.1016/S0266-3538(01)00223-8
    [13] GONG Y, CHEN X J, LI W C, et al. Delamination in carbon fiber epoxy DCB laminates with different stacking sequences: R-curve behavior and bridging traction-separation relation[J]. Composite Structures,2021,262:113605. doi: 10.1016/j.compstruct.2021.113605
    [14] DE MOURA M F S F, CAMPILHO R D S G, AMARO A M, et al. Interlaminar and intralaminar fracture characterization of composites under mode I loading[J]. Composite Structures,2010,92(1):144-149. doi: 10.1016/j.compstruct.2009.07.012
    [15] PEREIRA A B, DE MORAIS A B. Mode I interlaminar fracture of carbon/epoxy multidirectional laminates[J]. Composites Science and Technology,2004,64(13):2261-2270.
    [16] GONG Y, HOU Y, ZHAO L, et al. A modified mode I cohe-sive zone model for the delamination growth in DCB lami-nates with the effect of fiber bridging[J]. International Journal of Mechanical Sciences,2020,176:105514. doi: 10.1016/j.ijmecsci.2020.105514
    [17] HU P, PULUNGAN D, TAO R, et al. An experimental study on the influence of intralaminar damage on interlaminar delamination properties of laminated composites[J]. Composites Part A,2020,131:105783. doi: 10.1016/j.compositesa.2020.105783
    [18] LACHAUD F, PAROISSIEN E, MICHEL L. Validation of a simplified analysis for the simulation of delamination of CFRP composite laminated materials under pure mode I[J]. Composite Structures,2020,237:111897. doi: 10.1016/j.compstruct.2020.111897
    [19] CHOI N S. Delamination fracture of multidirectional carbon-fiber/epoxy composites under mode I, mode II and mixed-mode I/II loading[J]. Journal of Composite Materials,1999,33(1):73-100. doi: 10.1177/002199839903300105
    [20] PEREIRA A B, DE MORAIS A B, MARQUES A T, et al. Mode II interlaminar fracture of carbon/epoxy multidirectional laminates[J]. Composites Science and Technology,2003,64(10):1653-1659.
    [21] GONG Y, ZHAO L B, ZHANG J Y, et al. Delamination propagation criterion including the effect of fiber bridging for mixed-mode I/II delamination in CFRP multi-directional laminates[J]. Composites Science and Technology,2017,151:302-309. doi: 10.1016/j.compscitech.2017.09.002
    [22] GONG Y, ZHAO L B, ZHANG B, et al. R-curve behaviour of the mixed-mode I/II delamination in carbon/epoxy lami-nates with unidirectional and multidirectional interfaces[J]. Composite Structures,2019,223:110949. doi: 10.1016/j.compstruct.2019.110949
    [23] BAE H, KANG M, WOO K, et al. Test and analysis of modes I, II and mixed-mode I/II delamination for carbon/epoxy composite laminates[J]. International Journal of Aeronau-tical and Space Sciences,2019,20(3):636-652. doi: 10.1007/s42405-019-00170-9
    [24] XU X P, NEEDLEMAN A. Void nucleation by inclusion debonding in a crystal matrix[J]. Modelling & Simulation in Materials Science & Engineering,1999,1(2):111-132.
    [25] VIGGO T, JOHN W H. The relation between crack growth resistance and fracture process parameters in elastic-plastic solids[J]. Journal of the Mechanics and Physics of Solids,1992,40(6):1377-1397. doi: 10.1016/0022-5096(92)90020-3
    [26] MANGALGIRI P D, JOHNSON W S. Investigation of fiber bridging in double cantilever beam specimens[J]. Journal of Composites, Technology and Research,1987,9(1):10. doi: 10.1520/CTR10421J
    [27] YAO L, CUI H, ALDERLIESTEN R C, et al. Thickness effects on fibre-bridged fatigue delamination growth in compo-sites[J]. Composites Part A,2018,110:21-28. doi: 10.1016/j.compositesa.2018.04.015
    [28] LIU W L, CHEN P H. Theoretical analysis and experi-mental investigation of the occurrence of fiber bridging in unidirectional laminates under mode I loading[J]. Composite Structures,2021,257:113383. doi: 10.1016/j.compstruct.2020.113383
    [29] DÁVILA C G A, ROSE C P, CAMANHO P. A procedure for superposing linear cohesive laws to represent multiple damage mechanisms in the fracture of composites[J]. International Journal of Fracture,2009,158(2):211-223. doi: 10.1007/s10704-009-9366-z
    [30] AIROLDI A, DÁVILA C G. Identification of material parameters for modelling delamination in the presence of fibre bridging[J]. Composite Structures,2012,94(11):3240-3249. doi: 10.1016/j.compstruct.2012.05.014
    [31] 侯怡鑫. 含纤维桥接的复合材料层合板分层扩展内聚力模型[D]. 重庆: 重庆大学, 2018.

    HOU Yixin. Cohesive model for delamination in composite multidirectional laminates with fiber bridging[D]. Chongqing: Chongqing University, 2018(in Chinese).
    [32] SHOKRIEH M M, RAJABPOUR-SHIRAZI H, HEIDARI-RARANI M, et al. Simulation of mode I delamination propagation in multidirectional composites with R-curve effects using VCCT method[J]. Computational Materials Science,2012,65:66-73. doi: 10.1016/j.commatsci.2012.06.025
    [33] FARMAND-ASHTIANI E, ALANIS D, CUGNONI J, et al. Delamination in cross-ply laminates: Identification of traction separation relations and cohesive zone modeling[J]. Composites Science and Technology,2015,119:85-92. doi: 10.1016/j.compscitech.2015.09.025
    [34] LI S, NIE J, QIAN J, et al. Initial post-buckling and growth of a circular delamination bridged by nonlinear fibers[J]. Journal of Applied Mechanics,2000,67(4):777-784. doi: 10.1115/1.1313534
    [35] 张璐. 含分层缺陷复合材料层合板分层扩展行为与数值模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.

    ZHANG Lu. Numerical analysis and experimental study on propagation behavior of laminated composite plates with embedded delamination[D]. Harbin: Harbin Institute of Technology, 2012(in Chinese).
    [36] 张东哲, 林智育, 林仁邦, 等. 含分层复合材料结构压缩强度研究[J]. 复合材料科学与工程, 2020(12):64-73. doi: 10.3969/j.issn.1003-0999.2020.12.011

    ZHANG Dongzhe, LIN Zhiyu, LIN Renbang, et al. Study of compressive strength of composite structure with delami-nation[J]. Composites Science and Engineering,2020(12):64-73(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.12.011
    [37] 熊颖, 薛江红, 陈叔华, 等. 考虑界面接触效应的复合材料层合板分层屈曲的三维有限元分析[J]. 机械强度, 2019, 41(2):377-382.

    XIONG Ying, XUE Jianghong, CHEN Shuhua, et al. Three-dimensional finite element analysis of delamination buckling of composite laminates with contact effect at the interfaces of delamination[J]. Journal of Mechanical Strength,2019,41(2):377-382(in Chinese).
    [38] SENTHIL K, AROCKIARAJAN A, PALANINATHAN R, et al. Defects in composite structures: Its effects and prediction methods-A comprehensive review[J]. Composite Structures,2013,106:139-149. doi: 10.1016/j.compstruct.2013.06.008
    [39] WANG K, ZHAO L, HONG H, et al. An analytical model for evaluating the buckling, delamination propagation, and failure behaviors of delaminated composites under uni-axial compression[J]. Composite Structures,2019,223:110937. doi: 10.1016/j.compstruct.2019.110937
    [40] HWANG S F, LIU G H. Buckling behavior of composite laminates with multiple delaminations under uniaxial compression[J]. Composite Structures,2001,53(2):235-243. doi: 10.1016/S0263-8223(01)00007-1
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  1119
  • HTML全文浏览量:  406
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-09
  • 修回日期:  2021-06-09
  • 录用日期:  2021-06-12
  • 网络出版日期:  2021-06-22
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回