留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米纤维素发光材料研究进展

钟伟婷 王智鑫 王堃 彭霄鹏 蒋建新

钟伟婷, 王智鑫, 王堃, 等. 纳米纤维素发光材料研究进展[J]. 复合材料学报, 2022, 39(1): 39-47. doi: 10.13801/j.cnki.fhclxb.20210617.001
引用本文: 钟伟婷, 王智鑫, 王堃, 等. 纳米纤维素发光材料研究进展[J]. 复合材料学报, 2022, 39(1): 39-47. doi: 10.13801/j.cnki.fhclxb.20210617.001
ZHONG Weiting, WANG Zhixin, WANG Kun, et al. Research progress of nanocellulose-based luminescent materials[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 39-47. doi: 10.13801/j.cnki.fhclxb.20210617.001
Citation: ZHONG Weiting, WANG Zhixin, WANG Kun, et al. Research progress of nanocellulose-based luminescent materials[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 39-47. doi: 10.13801/j.cnki.fhclxb.20210617.001

纳米纤维素发光材料研究进展

doi: 10.13801/j.cnki.fhclxb.20210617.001
基金项目: 国家自然基金面上项目(31770622);中央级公益性科研院所基本科研业务费专项资助(CAFYBB2018GB001);南海系列育才计划资助
详细信息
    通讯作者:

    王堃,教授,博士生导师,研究方向为植物资源综合利用及生物质能源  E-mail:wangkun@bjfu.edu.cn

    彭霄鹏,助理研究员,研究方向为分子生物学和植物学  E-mail: xp@caf.ac.cn

  • 中图分类号: TB332;TQ352.7

Research progress of nanocellulose-based luminescent materials

  • 摘要: 纳米纤维素发光材料不仅具有发光基团特有的光物理或光化学性能,还具备纳米纤维素的可生物降解、生物相容、环境友好等特性,拓展了功能化纤维材料的应用领域。根据制备方法,纳米纤维素发光材料可分为三类:纳米纤维素/碳量子点复合发光材料、纤维素发光碳量子点和纳米纤维素/荧光染料复合发光材料。纳米纤维素发光材料具有独特的光学特性及结构特点,可制成膜、纸、水凝胶、气凝胶等,在离子检测、生物成像、光电应用等领域具有巨大的应用前景。本文介绍了发光材料的发光原理,概述了纳米纤维素发光材料的制备方法及相关应用,对纳米纤维素发光材料面临的挑战及发展趋势进行了总结和展望。

     

  • 图  1  纤维素纳米晶(CNCs) (a)、纳米纤丝纤维素(NFC) (b)和细菌纳米纤维素(BNC) (c)的SEM图像[2]

    Figure  1.  SEM images of Cellulose nanocrystalline (CNC) (a), Nanofilament cellulose (NFC) (b) and Bacterial nanocellulose BNC (c)[2]

    图  2  发光材料的发光原理[12]

    EXC—Excitation;EM—Emission(Radiative transition to ground state);HEAT—Non-radiative transition to ground state;A—Ground state;A*—Excited state ;R—Radiative transition;NR—Non-radiative transition

    Figure  2.  Principle of luminescence[12]

    图  3  CNF/碳量子点(CDs)基发光气凝胶的制备路线[24]

    Figure  3.  Preparation route of CNF/carbon quantum dots (CDs) based luminescent gels[24]

    EDC/NHS—1-(3-dimethylaminopropyl)-3-ethylcarbondiimide hydrochloride/N-hydroxysuccinimide

    图  4  CDs的制备流程图[32]

    Figure  4.  Flow chart of CDs preparation[32]

    SO3H-IL—SO3H functionalized acidic ionic liquid

    图  5  不同表面电荷密度的CNC样品的DTAF标记反应示意图[37]

    Figure  5.  DTAF labeling reaction schematic diagram of CNC samples with different surface charge density[37]

    图  6  37℃下HeLa细胞与NH2-碳量子点(CQDs)、AF488-CNCs和TEMPO氧化的CNCs (TO-CNC)@CQD孵育4 h (a)和24 h (b)后的共聚焦发光显微照片[22]

    Figure  6.  Confocal luminescence micrographs of HeLa cells incubated with NH2-carbon quantum dots (CQDs)、AF488-CNCs and TEMPO-oxidized CNCs (TO-CNCs)@CQD at 37℃ for 4 h (a) and 24 h (b)[22]

    图  7  热活化延迟荧光(TADF)苄基纤维素衍生物(TBC-X)的分子设计[46]

    Figure  7.  Molecular design of thermally activated delayed fluorescence (TADF) benzylcellulose derivative (TBC-X)[46]

    图  8  三(2-苯并咪唑甲基)胺 (NTB)-Ln3+-tCNFS纳米纸的制备工艺[47]

    Figure  8.  Preparation of tris(2-benzimidazolylmethyl) amine (NTB)-Ln3+-tCNFs nanopaper[47]

    表  1  各种传感器上Fe2+离子的检测极限和响应时间[44]

    Table  1.   Detection limit and response time of Fe2+ ions on various sensors[44]

    SensorsDetection limit/(μmol·L−1)Response time
    Rhodanmine B 0.2 1 h
    Terpy-functionalized TiO2 0.0003 30 s
    Carbon dots 0.02 2 min
    MoS2/o-phenylenediamine (OPD) /H2O2 0.007 30 s
    N-aryl-o-acylhydroxylamine 0.5 1 min
    N-doped carbon dots 10.98 Few seconds
    Arene-based fluorescent probes 8.54 Few seconds
    Benzimidazolyl pyridine 0.28
    Phen-methylene diphenyl diisocyanate (MDI)-cellulose acetate (CA) 0.046 (2.6×10−6) fluorescence mode < 2 s
    Phen-MDI-CA 0.89 (5×10−5) naked-eye mode < 2 s
    下载: 导出CSV
  • [1] 张玲芝. 新型纤维素荧光材料的合成、结构与性能研究[D]. 湖北: 武汉大学, 2013.

    ZHANG L Z. Synthesis, structure and properties of novel cellulose-based fluorescent materials[D]. Hubei: Wuhan University, 2013 (in Chinese).
    [2] BEJOY T, MIDHUN C R, ATHIRA K B, et al. Nanocellulose, a versatile green platform: from biosources to materials and their applications[J]. Chemical Reviews,2018,118(24):11575-11625. doi: 10.1021/acs.chemrev.7b00627
    [3] LIU K, DU H S, ZHENG T, et al. Recent advances in cellulose and its derivatives for oilfield applications[J]. Carbohydrate Polymers,2021,259:117740. doi: 10.1016/j.carbpol.2021.117740
    [4] 刘慰, 司传领, 杜海顺, 等. 纳米纤维素基水凝胶的制备及其在生物医学领域的应用进展[J]. 林业工程学报, 2020, 4(5):11-19.

    LIU W, SI C L, DU H S, et al. Advance in preparation of nanocellulose -based hydrogels and their biomedical applications[J]. Journal of Forestry Engineering,2020,4(5):11-19(in Chinese).
    [5] MUGDHA D, SURYAWANSHI V B. Analysis of cellulose based nanocomposites & potential applications[J]. Materials Today: Proceedings,2021,45(2):3476-3482.
    [6] LI Q, WU Y L, FANG R X, et al. Application of nanocellulose as particle stabilizer in food Pickering emulsion: Scope, merits and challenges[J]. Trends in Food Science & Technology,2021,110:573-583.
    [7] NISHIL M, LIAN H, MUHAMMAD S I, et al. Selective adsorption and separation of organic dyes using functionalized cellulose nanocrystals[J]. Chemical Engineering Journal,2021,417:129237. doi: 10.1016/j.cej.2021.129237
    [8] KINGSHUK D, MEHRAN G, FUGEN D, et al. A review of nanocellulose as a new material towards environmental sustainability[J]. Science of the Total Environment,2021,775:145871. doi: 10.1016/j.scitotenv.2021.145871
    [9] YU S J, SUN J Z, SHI Y F, et al. Nanocellulose from various biomass wastes: its preparation and potential usages towards the high value-added products[J]. Environmental Science and Ecotechnology,2021,5:100077. doi: 10.1016/j.ese.2020.100077
    [10] N R, MANISHITA R S, JOHN F K. Nanocellulose: a mini-review on types and use in drug delivery systems[J]. Carbohydrate Polymer Technologies and Applications,2021,2:100031. doi: 10.1016/j.carpta.2020.100031
    [11] 祁康成, 曹贵川. 发光原理与发光材料[M]. 成都: 电子科技大学出版社, 2012: 2-11.

    QI K C, CAO G C. Luminescent principle and luminescent materials[M]. Chengdu: University of Electronic Science and Technology Press, 2012: 2-11(in Chinese).
    [12] BLASSE G, GRABMAIER B C. Luminescent Materials[M]. Berlin: Springer-Verlag Press, 1994: 1-2.
    [13] SHAJEEYA A S, SHUBHALAKSHMI S, RAJENDER S, et al. Syntheses of N-doped carbon quantum dots (NCQDs) from bioderived precursors: a timely update[J]. ACS Sustainable Chemistry & Engineering,2021,9(1):3-49.
    [14] XU X Y, ROBERT R, GU Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nano-tube fragments[J]. Journal of the American Chemical So-ciety,2004,126(40):12736-12737. doi: 10.1021/ja040082h
    [15] JEFFERY M P, YOUNG S P, JAEHOON L, et al. Spectroscopic and device aspects of nanocrystal quantum dots[J]. Chemical Reviews,2016,116(18):10513-10622. doi: 10.1021/acs.chemrev.6b00169
    [16] MARIA K, ZORAN M M, PETR H, et al. Carbon quantum dots modified polyurethane nanocomposite as effective photocatalytic and antibacterial agents[J]. ACS Biomaterials Science & Engineering,2018,4(12):3983-3993.
    [17] LI L, LI W P, MA C, et al. Paper-based electrochemiluminescence immunodevice for carcinoembryonic antigen using nanoporous gold-chitosan hybrids and graphene quantum dots functionalized Au@Pt[J]. Sensors and Actuators B: Chemical,2014,202:314-322. doi: 10.1016/j.snb.2014.05.087
    [18] WU L D, LI M, ZHANG M, et al. Ultrasensitive electrochemiluminescence immunosensor for tumor marker detection based on nanoporous sliver@carbon dots as labels[J]. Sensors and Actuators B: Chemical,2013,186:761-767. doi: 10.1016/j.snb.2013.06.092
    [19] ZHANG W J, CHEN J, WANG J, et al. Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum Dots[J]. Inorganic Chemistry,2009,48(20):9723-9731. doi: 10.1021/ic9010949
    [20] 韩尊强, 钟伟婷, 王堃. 氮掺杂竹炭基超级电容器电极材料制备与表征[J]. 林业工程学报, 2020, 5(5):76-83.

    HAN Z Q, ZHONG W T, WANG K. Preparation and examination of nitrogen-doped bamboo porous carbon for supercapacitor materials[J]. Journal of Forestry Engineering,2020,5(5):76-83(in Chinese).
    [21] KAROLⅡNA J, GUO J Q, ILARI F, et al. Modification of cellulose nanofibrils with luminescent carbon dots[J]. Biomacromolecules,2014,15(3):876-881. doi: 10.1021/bm4017176
    [22] GUO J Q, LIU D F, ILARI F, et al. Photoluminescent hybrids of cellulose nanocrystals and carbon quantum dots as cytocompatible probes for in vitro bioimaging[J]. Biomacromolecules,2017,18(7):2045-2055. doi: 10.1021/acs.biomac.7b00306
    [23] GUO X, XU D, YUAN H M, et al. A novel fluorescent nanocellulosic hydrogel based on carbon dots for efficient adsorption and sensitive sensing in heavy metals[J]. Journal of Materials Chemistry A,2019,7:27081-27088. doi: 10.1039/C9TA11502A
    [24] WU B L, ZHU G, ALAIN D, et al. Fluorescent aerogels based on chemical crosslinking between nanocellulose and carbon dots for optical sensor[J]. ACS Applied Materials & Interfaces,2019,11(17):16048-16058.
    [25] 管庆顺, 左克曼, 吴伟兵, 等. 纯水相体系超声雾化法制备荧光磁性纳米纤维素微球[J]. 林业工程学报, 2018, 3(6):68-74.

    Guan Q S, Zuo K M, Wu W B, et al. Preparation of fluorescent magnetic nanocellulose microspheres by ultrasonic atomization in pure aqueous system[J]. Journal of Forestry Engineering,2018,3(6):68-74(in Chinese).
    [26] ZENG J, YAN L F. Metal-free transparent luminescent cellulose films[J]. Cellulose,2015,22(1):729-736. doi: 10.1007/s10570-014-0485-y
    [27] YU S J, LI W, YUKI F, et al. Fluorescent spherical sponge cellulose sensors for highly selective and semiquantitative visual analysis: detection of Hg2+ and Cu2+ ions[J]. ACS Sustainable Chemistry & Engineering,2019,7(23):19157-19166.
    [28] 哈丽丹·买买提, 阿卜杜黑热木·阿瓦提, 古妮萨柯孜·伊斯拉木, 等. 纤维素基荧光碳点的制备及应用研究进展[J]. 新疆大学学报 (自然科学版), 2020, 37(1):29-35.

    MAIMAITI H, AWATI A, YISILAMU G, et al. Progress in preparation and application of cellulose based fluorescent carbon dots[J]. Journal of Xinjiang University (Natural Science Edition),2020,37(1):29-35(in Chinese).
    [29] 沈培莲. 纤维素基荧光碳点的制备及其应用研究[D]. 浙江: 浙江理工大学, 2017.

    SHEN P L. 2017. Preparation and application of cellulose based fluorescent carbon dots[D]. Zhejiang: Zhejiang Sci-Tech University, 2017 (in Chinese).
    [30] PENG H, TRAVASSEJDIC J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates[J]. Chemistry of Materials,2009,21(23):5563-5565. doi: 10.1021/cm901593y
    [31] KRYSMANN M J, KELARAKIS A, GLANNELIS P. Photoluminescent carbogenic nanoparticles directly derived from crude biomass[J]. Green Chemistry,2012,14(11):3141-3145. doi: 10.1039/c2gc35907c
    [32] WANG C Y, WANG C F, XU P P, et al. Synthesis of cellulose-derived carbon dots using acidic ionic liquid as a catalyst and its application for detection of Hg2+[J]. Journal of Materials Science,2016,51(2):861-867. doi: 10.1007/s10853-015-9410-5
    [33] YANG G, WAN X, SU Y, et al. Acidophilic S-doped carbon quantum dots derived from cellulose fibers and their fluorescence sensing performance for metal ions in an extremely strong acid environment[J]. Journal of Materials Chemistry A,2016,4:12841-12849. doi: 10.1039/C6TA05943K
    [34] LENG T Y, ZYGMUNT J J, MAHYAR M, et al. Ensemble and single particle fluorescence characterization of dye-labeled cellulose nanocrystals[J]. Langmuir,2017,33(32):8002-8011. doi: 10.1021/acs.langmuir.7b01717
    [35] KHALED A M, JIMMY A M, KEITH B M, et al. Effect of surface charge on the cellular uptake and cytotoxicity of fluo-rescent labeled cellulose nanocrystals[J]. ACS Applied Materials & Interfaces,2010,2(10):2924-2932.
    [36] WILLIAM H, HENRI C, TOMMY L H, et al. Fluorescent cellulose microfibrils as substrate for the detection of cellulase activity[J]. Biomacromolecules,2003,4(3):481-487. doi: 10.1021/bm020076i
    [37] TIFFANY A, ANTHONY P, JOSE M M, et al. Fluorescent labeling and characterization of cellulose nanocrystals with varying charge contents[J]. Biomacromolecules,2013,14(9):3278-3284. doi: 10.1021/bm400879x
    [38] WANG Q Y, CAI J, CHEN K Q, et al. Construction of fluorescent cellulose biobased plastics and their potential application in anti-counterfeiting banknotes[J]. Macromolecular Materials and Engineering,2016,301(4):377-382. doi: 10.1002/mame.201500364
    [39] TIAN W G, TIAN J T. Synergy of different fluorescent enhancement effects on spiropyran appended onto cellulose[J]. Langmuir,2014,30(11):3223-3227. doi: 10.1021/la404628p
    [40] ZHANG X G, QIN X Z, CHEN H L. Strong green fluorescent hydrogels with Ba2MgSi2O7: Eu2+ phosphor embedded in cellulose[J]. Luminescence,2017,32:535-538. doi: 10.1002/bio.3209
    [41] HUANG J L, LI C J, DEREK G G. Cellulose nanocrystals incorporating fluorescent methylcoumarin groups[J]. ACS Sustainable Chemistry & Engineering,2013,1(9):1160-1164.
    [42] JAY W G, KAI F M, YONGSOON S, et al. Alexa fluor-labeled fluorescent cellulose nanocrystals for bioimaging solid cellulose in spatially structured microenvironments[J]. Bioconjugate Chemistry,2015,26(3):593-601. doi: 10.1021/acs.bioconjchem.5b00048
    [43] JULIEN R G N, GUILLAUME C, Yu Y, et al. Multicolor fluo-rescent labeling of cellulose nanofibrils by click chemistry[J]. Biomacromolecules,2015,16(4):1293-1300. doi: 10.1021/acs.biomac.5b00083
    [44] HAQ N, TIAN W G, ZHANG J M, et al. Cellulose-based sensor containing phenanthroline for the highly selective and rapid detection of Fe2+ ions with naked eye and fluorescent dual modes[J]. ACS Applied Materials & Interfaces,2018,10(2):2114-2121.
    [45] 任志鹏. 纤维素水凝胶荧光碳点的制备和生物成像研究[D]. 上海: 华东师范大学, 2020.

    REN Z P. Preparation and bioimaging of fluorescent carbon dots of cellulose hydrogels[D]. Shanghai: East China Normal University, 2020 (in Chinese).
    [46] MASAYA S, HIROKI O, KATSUAKI S, et al. Thermally activated delayed fluorescence benzyl cellulose derivatives for nondoped organic light-emitting diodes[J]. Macromole-cules,2020,53(8):2864-2873. doi: 10.1021/acs.macromol.9b02644
    [47] ZHANG S F, LIU G, CHANG H, et al. Optical haze nanopaper enhanced ultraviolet harvesting for direct soft-fluorescent emission based on lanthanide complex assembly and oxidized cellulose nanofibrils[J]. ACS Sustainable Chemistry & Engineering,2019,7(11):9966-9975.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1101
  • HTML全文浏览量:  750
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-06
  • 修回日期:  2021-06-08
  • 录用日期:  2021-06-09
  • 网络出版日期:  2021-06-17
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回