Damage mechanism of composite sleeve-type bolt interference fit structure during the installation process
-
摘要: 复合材料干涉连接结构由于能够显著降低孔周应力集中,提高结构承载能力和疲劳寿命,而成为一种先进的连接形式。但是由于复合材料层间强度低的特点,不合理的干涉螺栓连接结构形式、尺寸以及安装方式很容易引起孔壁分层,降低结构承载能力。针对该问题,本论文提出了一种基于衬套螺栓的干涉连接结构,并对该结构开展了安装过程中承载机制的试验和有限元研究。试验中测量了插钉力变化和孔壁损伤情况,有限元模型中充分考虑了层内损伤和层间分层因素,建立了基于复合材料渐进损伤和内聚力单元的损伤预测模型。通过干涉量为2.2%的衬套螺栓安装过程中的插钉力和损伤的有限元模型与试验结果对比分析发现,二者拟合度良好,证明模型的准确性。通过不同干涉量下的分层情况对比分析以及临界干涉量求解,解释了衬套螺栓提高孔壁质量的原因并提出了可靠干涉量范围。Abstract: Composite interference fit joints have become an advanced joint form because they can significantly reduce the stress concentration around the holes and thus improve the bearing capacity and fatigue life of the structure. However, due to the low interlaminar strength of composite materials, unreasonable interference bolt structure style, dimension and installation method can easily cause hole wall delamination and reduce the structure bearing capacity. To solve this problem, an interference joint structure based on sleeve-type bolts was proposed, and the experiment and finite element analysis of the structure during installation were carried out. The changes of installation force and damage around hole were measured. A damage prediction model based on progressive damage and cohesive element of composite was established by taking into full account the factors of intralaminar damage and interlaminar delamination. Through the comparative analysis of the insertion force and damage of sleeving bolts with 2.2% interference, it is found that the finite element model fits well with the test results, which proves the accuracy of the model. The reason why sleeve-type bolt can improve the quality of hole wall is explained and the range of reliable interference is put forward through comparative analysis under different interference and critical interference percentage calculation.
-
Key words:
- composite /
- sleeve-type bolt /
- interference-fit /
- damage mechanism /
- critical interference percentage
-
图 6 线性刚度退化图
Figure 6. Linear stiffness degradation diagram
Ei—Initial modulus; εi—Strain; ε0, i—Strain corresponding to the initial damage point; εf, i—Strain corresponding to the full damage point; di—Damage variable controlling evolution law; t—Stretch; c—Compress; f—Fiber; m—Matrix; i=f, m; $ {\sigma _{{i}}}$—Stress; $\sigma _{_{0,{{i}}}}^{\rm{t}} $—Stress corresponding to the initial damage point under tension load; $ \sigma _{_{0,{{i}}}}^{\rm{c}}$—Stress corresponding to the initial damage point under compression load
图 7 内聚力单元的双线性本构模型:(a)法向行为;(b)剪切行为
Figure 7. Bilinear constitutive model of cohesive element: (a) Normal behavior; (b) Shear behavior
tn, ts, tt—Interface stress, shear stress in s direction, shear stress in t direction; dn, ds, t—Damage variables controlling evolution law in n, s, t direction; δn 0, δs 0, δt 0—Initial interface damage displacement in n, s, t direction; δn max, δs max, δt max—Effective displacement of a point in the loading process in n, s, t direction ; δn f, δs f, δt f—Final delamination displacement in n, s, t direction
图 11 CFRP层合板层间损伤图:(a)损伤形貌: (a1) 入口处; (a2) 中间位置; (a3) 出口处;(b)仿真结果: (b1) 入口处; (b2) 中间位置; (b3) 出口处
Figure 11. Interlaminar damage map of CFRP laminates: (a) Damage morphology: (a1) Entrance; (a2) Intermediate position; (a3) Exit position; (b) Simulation result: (b1) Entrance; (b2) Intermediate position; (b3) Exit position
表 1 T700/BA9916材料属性
Table 1. Property of T700/BA9916
E1/
GPaE2/
GPaE3/
GPaG12/
GPaG13/
GPaG23/
GPaυ12 υ13 υ23 114 8.61 8.61 4.16 4.16 3.0 0.3 0.3 0.45 Xt/
MPaXc/
MPaYt/
MPaYc/
MPaZt/
MPaZc/
MPaS12/
MPaS13/
MPaS23/
MPa2688 1458 69.5 236 55.5 175 136 136 95.6 Notes: E1—Longitudinal modulus; E2, E3—Transverse modulus; G12, G13, G23—Shear modulus; υ12, υ13, υ23—Poisson’s ratio; Xt—Longitudinal tensile strength; Xc—Longitudinal compression strength; Yt, Zt—Transverse tensile strength; Yc, Zc—Transverse compression strength; S12, S13, S23—Shear strength. 表 2 钛合金及不锈钢材料属性
Table 2. Properties of titanium alloy and stainless steel
Material Modulus/GPa Poisson's ratio Density/(kg·m−3) Ti alloy 110 0.3 4.51×103 Stainless steel 194 0.3 7.93×103 表 3 内聚力单元属性
Table 3. Property of cohesive element
GIC/
(mJ·mm−2)GIIC/
(mJ·mm−2)GIIIC/
(mJ·mm−2)tn0/ts0/tt0/
MPaKn0/Ks0/Kt0/
(N·mm−3)u 0.28 0.82 0.82 60 0.8×106 10−4 Notes: GIC—Critical energy release rate in mode I delamination; GIIC—Critical energy release rate in mode II delamination; GIIIC—Critical energy release rate in mode III delamination; tn0, ts0, tt0—Interface strength; Kn0, Ks0, Kt0—Initial interface stiffness; u—Viscosity coefficient. -
[1] ZOU P, CHEN X, CHEN H, et al. Damage propagation and strength prediction of a single-lap interference-fit lami-nate structure[J]. Frontiers of Mechanical Engineering,2020,15(4):558-570. doi: 10.1007/s11465-020-0591-5 [2] ZHANG K F, HU J S, ZOU P, et al. Effect of secondary bending and bolt load on damage and strength of composite single-lap interference-fit bolted structures[J]. Journal of Composite Materials,2019,53(28/30):4385-4398. [3] CAO Z, CARDEW-HALL M. Interference-fit riveting technique in fiber composite laminates[J]. Aerospace Science and Technology,2006,10(4):327-330. doi: 10.1016/j.ast.2005.11.003 [4] ZOU P, LI Y, ZHANG K, et al. Influence of interference-fit percentage on stress and damage mechanism in hi-lock pin installation process of CFRP[J]. Journal of Composite Materials,2017,51(25):3525-3538. doi: 10.1177/0021998316689601 [5] LI J, LI Y, ZHANG K, et al. Interface damage behaviour during interference-fit bolt installation process for CFRP/Ti alloy joining structure[J]. Fatigue & Fracture of Engi-neering Materials & Structures,2015,38(11):1359-1371. [6] ZOU P, LI Y, ZHANG K, et al. Mode I delamination mecha-nism analysis on CFRP interference-fit during the installation process[J]. Materials & Design,2017,116:268-277. [7] 中国航空科学技术研究院. 飞机结构抗疲劳断裂强化设计手册[M]. 北京: 航空工业出版社, 1993.China Academy of Civil Aviation Science and Technology. The structure fatigue–Fracture strengthening technology handbook[M]. Beijing: Aviation Industry Press, 1993(in Chinese). [8] RAJU K P, BODJONA K, LIM G H, et al. Improving load sharing in hybrid bonded/bolted composite joints using an interference-fit bolt[J]. Composite Structures,2016,149:329-338. doi: 10.1016/j.compstruct.2016.04.025 [9] MULAZIMOGLU H, HAYLOCK L. Recent developments in techniques to minimize lightning current arcing between fasteners and composite structure[R]. UK: International Conference on Lightning and Static Electricity, 2011. [10] 刘风雷, 刘丹, 刘健光. 复合材料结构干涉安装控制及应用技术[J]. 航空精密制造技术, 2011, 47(6):36-38. doi: 10.3969/j.issn.1003-5451.2011.06.010LIU Fenglei, LIU Dan, LIU Jianguang. Control and application technology of interference installation for composite materials[J]. Aviation Precision Manufacturing Technology,2011,47(6):36-38(in Chinese). doi: 10.3969/j.issn.1003-5451.2011.06.010 [11] 刘风雷. 用于复合材料干涉结构的多功能紧固系统[J]. 航空制造技术, 2007(3):98-101. doi: 10.3969/j.issn.1671-833X.2007.03.019LIU Fenglei. Multifunctional fastening system for compo-site interference structures[J]. Aeronautical Manufac-turing Technology,2007(3):98-101(in Chinese). doi: 10.3969/j.issn.1671-833X.2007.03.019 [12] 陈坤, 舒茂盛, 胡仁伟, 等. 带衬套沉头螺栓复合材料/金属接头拉伸性能[J]. 北京航空航天大学学报, 2019, 45(3):633-640.CHEN Kun, SHU Maosheng, HU Renwei, et al. Tensile properties of composite/metal joints with bushed countersunk head bolts[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,45(3):633-640(in Chinese). [13] YUAN X, YUE Z F, WEN S F, et al. Numerical and experimental investigation of the cold expansion process with split sleeve in titanium alloy TC4[J]. International Journal of Fatigue,2015,77:78-85. doi: 10.1016/j.ijfatigue.2015.03.014 [14] American Society for Testing and Materials. Standard test method for bearing response of polymer matrix: D5961/D5961M[S]. US: American Society for Testing and Materials, 2013. [15] HOU G, ZHANG K, FAN X, et al. Analysis of exit-ply temperature characteristics and their effects on occurrence of exit-ply damages during UD CFRP drilling[J]. Composite Structures,2020,231:111456. doi: 10.1016/j.compstruct.2019.111456 [16] HOU G, LUO B, ZHANG K, et al. Investigation of high temperature effect on CFRP cutting mechanism based on a temperature controlled orthogonal cutting experiment[J]. Composite Structures,2021,268:113967. doi: 10.1016/j.compstruct.2021.113967 [17] XU G, CHENG H, ZHANG K, et al. Modeling of damage behavior of carbon fiber reinforced plastic composites interference bolting with sleeve[J]. Materials & Design,2020,194:108904. doi: 10.1016/j.matdes.2020.108904 [18] CHANG F K, CHANG K Y. Post-failure analysis of bolted composite joints in tension or shear-out mode failure[J]. Journal of Composite Materials,1987,21(9):809-833. doi: 10.1177/002199838702100903 [19] CAMANHO P P, MATTHEWS F L. A progressive damage model for mechanically fastened joints in composite laminates[J]. Journal of Composite Materials,1999,33(24):2248-2280. doi: 10.1177/002199839903302402 [20] TSERPES K I, LABEAS G, PAPANIKOS P, et al. Strength prediction of bolted joints in graphite/epoxy composite laminates[J]. Composites Part B:Engineering,2002,33(7):522-529. [21] MI Y, CRISFIELD M A, DAVIES G A O, et al. Progressive delamination using interface elements[J]. Delamination Behaviour of Composites,1998,32(14):367-386. [22] BENZEGGAGH M L, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science & Technology,1996,56(4):439-449. [23] REEDER J R, CREWS J. Mixed-mode bending method for delamination testing[J]. AIAA Journal, 1990, 28(7): 1270-1276. [24] 贾利勇, 贺高, 把余炜. 三维渐进失效模型在层压板失效分析中的应用[C]. 北京: 第17届全国复合材料学术会议, 2012: 129-135.JIA Liyong, HE Gao, BA Yuwei. Application of 3D progres-sive failure model in laminate failure analysis[C]. Beijing: Proceedings of the 17th National Composites Academic Conference, 2012: 129-135(in Chinese). [25] LI J, ZHANG K, LI Y, et al. Influence of interference-fit size on bearing fatigue response of single-lap carbon fiber reinforced polymer/Ti alloy bolted joints[J]. Tribology International,2016,93:151-162. doi: 10.1016/j.triboint.2015.08.044