留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料衬套螺栓干涉连接安装过程损伤机制

邹鹏 屈凡

邹鹏, 屈凡. 复合材料衬套螺栓干涉连接安装过程损伤机制[J]. 复合材料学报, 2022, 39(5): 2449-2459. doi: 10.13801/j.cnki.fhclxb.20210616.007
引用本文: 邹鹏, 屈凡. 复合材料衬套螺栓干涉连接安装过程损伤机制[J]. 复合材料学报, 2022, 39(5): 2449-2459. doi: 10.13801/j.cnki.fhclxb.20210616.007
ZOU Peng, QU Fan. Damage mechanism of composite sleeve-type bolt interference fit structure during the installation process[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2449-2459. doi: 10.13801/j.cnki.fhclxb.20210616.007
Citation: ZOU Peng, QU Fan. Damage mechanism of composite sleeve-type bolt interference fit structure during the installation process[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2449-2459. doi: 10.13801/j.cnki.fhclxb.20210616.007

复合材料衬套螺栓干涉连接安装过程损伤机制

doi: 10.13801/j.cnki.fhclxb.20210616.007
基金项目: 国家自然科学基金(52005458);航空科学基金(2018ZE23011)
详细信息
    通讯作者:

    邹鹏,博士,高级工程师,研究方向为复合材料结构强度  E-mail:zoupeng_0625@126.com

  • 中图分类号: V258;TB332

Damage mechanism of composite sleeve-type bolt interference fit structure during the installation process

  • 摘要: 复合材料干涉连接结构由于能够显著降低孔周应力集中,提高结构承载能力和疲劳寿命,而成为一种先进的连接形式。但是由于复合材料层间强度低的特点,不合理的干涉螺栓连接结构形式、尺寸以及安装方式很容易引起孔壁分层,降低结构承载能力。针对该问题,本论文提出了一种基于衬套螺栓的干涉连接结构,并对该结构开展了安装过程中承载机制的试验和有限元研究。试验中测量了插钉力变化和孔壁损伤情况,有限元模型中充分考虑了层内损伤和层间分层因素,建立了基于复合材料渐进损伤和内聚力单元的损伤预测模型。通过干涉量为2.2%的衬套螺栓安装过程中的插钉力和损伤的有限元模型与试验结果对比分析发现,二者拟合度良好,证明模型的准确性。通过不同干涉量下的分层情况对比分析以及临界干涉量求解,解释了衬套螺栓提高孔壁质量的原因并提出了可靠干涉量范围。

     

  • 图  1  衬套螺栓干涉安装示意图

    Figure  1.  Interference installation diagram of sleeve-type bolt

    CFRP—Carbon fiber reinforced plastic

    图  2  T700/BA9916碳纤维增强环氧树脂复合材料试件尺寸图

    Figure  2.  Dimension drawing of T700/BA9916 carbon fiber reinforced epoxy resin composite specimen

    $\phi$—Hole diameter

    图  3  衬套螺栓尺寸图

    Figure  3.  Dimension drawing of sleeve-type bolt

    R—Radius

    图  4  衬套螺栓干涉安装试验过程

    Figure  4.  Experimental process of sleeve-type bolt interference installation

    图  5  CFRP层合板衬套螺栓干涉连接有限元模型

    Figure  5.  Finite element model of sleeve-type bolt interference joint of CFRP laminates

    图  6  线性刚度退化图

    Figure  6.  Linear stiffness degradation diagram

    Ei—Initial modulus; εi—Strain; ε0, i—Strain corresponding to the initial damage point; εf, i—Strain corresponding to the full damage point; di—Damage variable controlling evolution law; t—Stretch; c—Compress; f—Fiber; m—Matrix; i=f, m; $ {\sigma _{{i}}}$—Stress; $\sigma _{_{0,{{i}}}}^{\rm{t}} $—Stress corresponding to the initial damage point under tension load; $ \sigma _{_{0,{{i}}}}^{\rm{c}}$—Stress corresponding to the initial damage point under compression load

    图  7  内聚力单元的双线性本构模型:(a)法向行为;(b)剪切行为

    Figure  7.  Bilinear constitutive model of cohesive element: (a) Normal behavior; (b) Shear behavior

    tn, ts, tt—Interface stress, shear stress in s direction, shear stress in t direction; dn, ds, t—Damage variables controlling evolution law in n, s, t direction; δn 0, δs 0, δt 0—Initial interface damage displacement in n, s, t direction; δn max, δs max, δt max—Effective displacement of a point in the loading process in n, s, t direction ; δn f, δs f, δt f—Final delamination displacement in n, s, t direction

    图  8  插钉力-位移曲线

    Figure  8.  Installation load-displacement curve

    图  9  CFRP层合板层内损伤微观图像:(a1) 入口处; (a2) 两板交界处; (a3) 出口处

    Figure  9.  Intralaminar damage images of CFRP laminates: (a1) Entrance; (a2) Junction of two plates; (a3) Exit location

    图  10  CFRP层合板不同位置处有限元层内损伤图:(b1) 入口处;(b2) 两板交界处; (b3) 出口处

    Figure  10.  Finite simulation result of damage at different positions of CFRP laminates: (b1) Entrance; (b2) Junction of two plates; (b3) Exit location

    图  11  CFRP层合板层间损伤图:(a)损伤形貌: (a1) 入口处; (a2) 中间位置; (a3) 出口处;(b)仿真结果: (b1) 入口处; (b2) 中间位置; (b3) 出口处

    Figure  11.  Interlaminar damage map of CFRP laminates: (a) Damage morphology: (a1) Entrance; (a2) Intermediate position; (a3) Exit position; (b) Simulation result: (b1) Entrance; (b2) Intermediate position; (b3) Exit position

    图  12  不同干涉量的CFRP层合板孔周应力分布:(a) 径向应力分布; (b) 周向应力分布

    Figure  12.  Stress distribution around hole of CFRP laminates with different interference: (a) Radial stress distribution; (b) Circumferential stress distribution

    图  13  不同干涉量 ((a)~(e)) 下CFRP层合板衬套螺栓安装层间损伤图

    Figure  13.  Interlaminar damage diagram of sleeve type bolt installation of CFRP laminates under different interference ((a)-(e))

    SDEG—Scalar stiffness degradation variable

    表  1  T700/BA9916材料属性

    Table  1.   Property of T700/BA9916

    E1/
    GPa
    E2/
    GPa
    E3/
    GPa
    G12/
    GPa
    G13/
    GPa
    G23/
    GPa
    υ12υ13υ23
    114 8.61 8.61 4.16 4.16 3.0 0.3 0.3 0.45
    Xt/
    MPa
    Xc/
    MPa
    Yt/
    MPa
    Yc/
    MPa
    Zt/
    MPa
    Zc/
    MPa
    S12/
    MPa
    S13/
    MPa
    S23/
    MPa
    2688 1458 69.5 236 55.5 175 136 136 95.6
    Notes: E1—Longitudinal modulus; E2, E3—Transverse modulus; G12, G13, G23—Shear modulus; υ12, υ13, υ23—Poisson’s ratio; Xt—Longitudinal tensile strength; Xc—Longitudinal compression strength; Yt, Zt—Transverse tensile strength; Yc, Zc—Transverse compression strength; S12, S13, S23—Shear strength.
    下载: 导出CSV

    表  2  钛合金及不锈钢材料属性

    Table  2.   Properties of titanium alloy and stainless steel

    MaterialModulus/GPaPoisson's ratioDensity/(kg·m−3)
    Ti alloy1100.34.51×103
    Stainless steel1940.37.93×103
    下载: 导出CSV

    表  3  内聚力单元属性

    Table  3.   Property of cohesive element

    GIC/
    (mJ·mm−2)
    GIIC/
    (mJ·mm−2)
    GIIIC/
    (mJ·mm−2)
    tn0/ts0/tt0/
    MPa
    Kn0/Ks0/Kt0/
    (N·mm−3)
    u
    0.280.820.82600.8×10610−4
    Notes: GIC—Critical energy release rate in mode I delamination; GIIC—Critical energy release rate in mode II delamination; GIIIC—Critical energy release rate in mode III delamination; tn0, ts0, tt0—Interface strength; Kn0, Ks0, Kt0—Initial interface stiffness; u—Viscosity coefficient.
    下载: 导出CSV
  • [1] ZOU P, CHEN X, CHEN H, et al. Damage propagation and strength prediction of a single-lap interference-fit lami-nate structure[J]. Frontiers of Mechanical Engineering,2020,15(4):558-570. doi: 10.1007/s11465-020-0591-5
    [2] ZHANG K F, HU J S, ZOU P, et al. Effect of secondary bending and bolt load on damage and strength of composite single-lap interference-fit bolted structures[J]. Journal of Composite Materials,2019,53(28/30):4385-4398.
    [3] CAO Z, CARDEW-HALL M. Interference-fit riveting technique in fiber composite laminates[J]. Aerospace Science and Technology,2006,10(4):327-330. doi: 10.1016/j.ast.2005.11.003
    [4] ZOU P, LI Y, ZHANG K, et al. Influence of interference-fit percentage on stress and damage mechanism in hi-lock pin installation process of CFRP[J]. Journal of Composite Materials,2017,51(25):3525-3538. doi: 10.1177/0021998316689601
    [5] LI J, LI Y, ZHANG K, et al. Interface damage behaviour during interference-fit bolt installation process for CFRP/Ti alloy joining structure[J]. Fatigue & Fracture of Engi-neering Materials & Structures,2015,38(11):1359-1371.
    [6] ZOU P, LI Y, ZHANG K, et al. Mode I delamination mecha-nism analysis on CFRP interference-fit during the installation process[J]. Materials & Design,2017,116:268-277.
    [7] 中国航空科学技术研究院. 飞机结构抗疲劳断裂强化设计手册[M]. 北京: 航空工业出版社, 1993.

    China Academy of Civil Aviation Science and Technology. The structure fatigue–Fracture strengthening technology handbook[M]. Beijing: Aviation Industry Press, 1993(in Chinese).
    [8] RAJU K P, BODJONA K, LIM G H, et al. Improving load sharing in hybrid bonded/bolted composite joints using an interference-fit bolt[J]. Composite Structures,2016,149:329-338. doi: 10.1016/j.compstruct.2016.04.025
    [9] MULAZIMOGLU H, HAYLOCK L. Recent developments in techniques to minimize lightning current arcing between fasteners and composite structure[R]. UK: International Conference on Lightning and Static Electricity, 2011.
    [10] 刘风雷, 刘丹, 刘健光. 复合材料结构干涉安装控制及应用技术[J]. 航空精密制造技术, 2011, 47(6):36-38. doi: 10.3969/j.issn.1003-5451.2011.06.010

    LIU Fenglei, LIU Dan, LIU Jianguang. Control and application technology of interference installation for composite materials[J]. Aviation Precision Manufacturing Technology,2011,47(6):36-38(in Chinese). doi: 10.3969/j.issn.1003-5451.2011.06.010
    [11] 刘风雷. 用于复合材料干涉结构的多功能紧固系统[J]. 航空制造技术, 2007(3):98-101. doi: 10.3969/j.issn.1671-833X.2007.03.019

    LIU Fenglei. Multifunctional fastening system for compo-site interference structures[J]. Aeronautical Manufac-turing Technology,2007(3):98-101(in Chinese). doi: 10.3969/j.issn.1671-833X.2007.03.019
    [12] 陈坤, 舒茂盛, 胡仁伟, 等. 带衬套沉头螺栓复合材料/金属接头拉伸性能[J]. 北京航空航天大学学报, 2019, 45(3):633-640.

    CHEN Kun, SHU Maosheng, HU Renwei, et al. Tensile properties of composite/metal joints with bushed countersunk head bolts[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,45(3):633-640(in Chinese).
    [13] YUAN X, YUE Z F, WEN S F, et al. Numerical and experimental investigation of the cold expansion process with split sleeve in titanium alloy TC4[J]. International Journal of Fatigue,2015,77:78-85. doi: 10.1016/j.ijfatigue.2015.03.014
    [14] American Society for Testing and Materials. Standard test method for bearing response of polymer matrix: D5961/D5961M[S]. US: American Society for Testing and Materials, 2013.
    [15] HOU G, ZHANG K, FAN X, et al. Analysis of exit-ply temperature characteristics and their effects on occurrence of exit-ply damages during UD CFRP drilling[J]. Composite Structures,2020,231:111456. doi: 10.1016/j.compstruct.2019.111456
    [16] HOU G, LUO B, ZHANG K, et al. Investigation of high temperature effect on CFRP cutting mechanism based on a temperature controlled orthogonal cutting experiment[J]. Composite Structures,2021,268:113967. doi: 10.1016/j.compstruct.2021.113967
    [17] XU G, CHENG H, ZHANG K, et al. Modeling of damage behavior of carbon fiber reinforced plastic composites interference bolting with sleeve[J]. Materials & Design,2020,194:108904. doi: 10.1016/j.matdes.2020.108904
    [18] CHANG F K, CHANG K Y. Post-failure analysis of bolted composite joints in tension or shear-out mode failure[J]. Journal of Composite Materials,1987,21(9):809-833. doi: 10.1177/002199838702100903
    [19] CAMANHO P P, MATTHEWS F L. A progressive damage model for mechanically fastened joints in composite laminates[J]. Journal of Composite Materials,1999,33(24):2248-2280. doi: 10.1177/002199839903302402
    [20] TSERPES K I, LABEAS G, PAPANIKOS P, et al. Strength prediction of bolted joints in graphite/epoxy composite laminates[J]. Composites Part B:Engineering,2002,33(7):522-529.
    [21] MI Y, CRISFIELD M A, DAVIES G A O, et al. Progressive delamination using interface elements[J]. Delamination Behaviour of Composites,1998,32(14):367-386.
    [22] BENZEGGAGH M L, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science & Technology,1996,56(4):439-449.
    [23] REEDER J R, CREWS J. Mixed-mode bending method for delamination testing[J]. AIAA Journal, 1990, 28(7): 1270-1276.
    [24] 贾利勇, 贺高, 把余炜. 三维渐进失效模型在层压板失效分析中的应用[C]. 北京: 第17届全国复合材料学术会议, 2012: 129-135.

    JIA Liyong, HE Gao, BA Yuwei. Application of 3D progres-sive failure model in laminate failure analysis[C]. Beijing: Proceedings of the 17th National Composites Academic Conference, 2012: 129-135(in Chinese).
    [25] LI J, ZHANG K, LI Y, et al. Influence of interference-fit size on bearing fatigue response of single-lap carbon fiber reinforced polymer/Ti alloy bolted joints[J]. Tribology International,2016,93:151-162. doi: 10.1016/j.triboint.2015.08.044
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  898
  • HTML全文浏览量:  919
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-06
  • 修回日期:  2021-06-03
  • 录用日期:  2021-06-09
  • 网络出版日期:  2021-06-17
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回