留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯取向影响石墨烯/硝酸盐复合材料传热性能的分子动力学模拟

吴晨光 李蓓

吴晨光, 李蓓. 石墨烯取向影响石墨烯/硝酸盐复合材料传热性能的分子动力学模拟[J]. 复合材料学报, 2022, 39(5): 2495-2503. doi: 10.13801/j.cnki.fhclxb.20210616.006
引用本文: 吴晨光, 李蓓. 石墨烯取向影响石墨烯/硝酸盐复合材料传热性能的分子动力学模拟[J]. 复合材料学报, 2022, 39(5): 2495-2503. doi: 10.13801/j.cnki.fhclxb.20210616.006
WU Chenguang, LI Bei. Effect of graphene orientation on heat transfer properties of graphene/nitrates composites by molecular dynamics simulation[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2495-2503. doi: 10.13801/j.cnki.fhclxb.20210616.006
Citation: WU Chenguang, LI Bei. Effect of graphene orientation on heat transfer properties of graphene/nitrates composites by molecular dynamics simulation[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2495-2503. doi: 10.13801/j.cnki.fhclxb.20210616.006

石墨烯取向影响石墨烯/硝酸盐复合材料传热性能的分子动力学模拟

doi: 10.13801/j.cnki.fhclxb.20210616.006
基金项目: 华中科技大学材料成形与模具技术国家重点实验室开放课题研究基金(P2021-009)
详细信息
    通讯作者:

    李蓓,博士,副教授,博士生导师,研究方向为高分子、金属及纳米复合材料计算模拟  E-mail:libei@whut.edu.cn

  • 中图分类号: TB33

Effect of graphene orientation on heat transfer properties of graphene/nitrates composites by molecular dynamics simulation

  • 摘要: 采用非平衡分子动力学(NEMD)方法,以二元硝酸盐Solar salt(NaNO3和KNO3质量比为6∶4) 为基体,石墨烯为填料,研究了石墨烯取向对石墨烯/硝酸盐复合材料界面热导的影响。研究发现,随着石墨烯平面与热流方向夹角的减小,体系热流密度升高、温差下降,界面热导从46.36 MW·m−2·K−1提升至80.03 MW·m−2·K−1。对复合材料中的原子振动态密度和微观结构进行表征,结果发现,随着石墨烯与热流夹角减小,界面处的热流从跨石墨烯平面运输转变为沿石墨烯平面的高效率运输,且加入石墨烯后硝酸盐会形成密度较大的致密层结构。同时,采用有效介质理论拟合了微观尺寸的石墨烯/硝酸盐复合材料热导率,结果表明,石墨烯平行于热流方向时复合材料热导率最高,且增加石墨烯体积分数及长度均有助于复合材料热导率的增强。

     

  • 图  1  石墨烯、硝酸盐 (a)、石墨烯/硝酸盐复合材料 (b) 初始模型(θ=30°)

    Figure  1.  Initial models of graphene and nitrates (a) and graphene/nitrates composites (b) (θ=30°)

    θ— Angle between the graphene plane and the heat flow direction (z direction); ΔT—Temperature difference between the two sides of the calculation area

    图  2  石墨烯/硝酸盐复合材料热流密度J

    Figure  2.  Heat flux J of graphene/nitrates composites

    图  3  石墨烯/硝酸盐复合材料体系热流方向上的温度分布

    Figure  3.  Temperature distribution of the graphene/nitrates composites in the direction of heat flow

    图  4  石墨烯在平面内和平面外的振动态密度 (a)、纯硝酸盐和石墨烯/硝酸盐复合材料沿热流方向(z方向)的振动态密度 (b)

    Figure  4.  In-plane and out-plane vibrational density of state of graphene (a), vibrational density of state of pure nitrates and graphene/nitrates composites along the heat flow direction (z direction) (b)

    图  5  石墨烯/硝酸盐复合材料密度分布(θ=0°)

    Figure  5.  Density distribution of graphene/nitrates composites (θ=0°)

    图  6  石墨烯/硝酸盐复合材料与纯硝酸盐中的N−N原子对分布函数图

    Figure  6.  N-N atom pair distribution function in graphene/nitrates composites and pure nitrates

    图  7  石墨烯/硝酸盐复合材料热导率增强系数有效介质理论模型结果与实验数据[5]的对比

    Figure  7.  Comparison between the thermal conductivity of graphene/nitrates composites enhancement coefficient obtained from the effective medium theory model and the experimental data[5]

    图  8  石墨烯/硝酸盐复合材料热导率随填料体积分数f的变化(石墨烯长度L=1.5 μm) (a) 及随填石墨烯长度L的变化(填料体积分数f=0.5vol%) (b)

    Figure  8.  Thermal conductivity of graphene/nitrates composites as a function of the volume fraction f with the graphene length L=1.5 μm (a) and as a function of the graphene length L with the volume fraction f=0.5vol% (b)

    表  1  石墨烯/硝酸盐复合材料势函数参数

    Table  1.   Potential parameters of graphene/nitrates composites

    Atomε/meVσ/nmq/e
    N 4.018 0.3431 0.95
    O 3.469 0.3285 −0.65
    K 4.336 0.3188 1
    Na 6.637 0.2407 1
    C 2.968 0.3407 0
    Atoms
    N−O Kb=22.766 eV·nm−2 r0=0.1268nm
    O−N−O Kθ=4.553 eV·rad−2 θ0=120°
    N−O−O−O Kψ=2.602 eV·rad−2 ψ0=0°
    Notes: ε—Unit of energy indicating the strength of the interaction between atoms; σ—Atomic spacing when the i atom interacts with the j atom is 0; q—Atomic charge; Harmonic parameters consist of bonds computed as Vb=Kb(rr0)2, angles computed as Vθ=Kθ(θθ0)2, and an improper function of the form Vψ=Kψ(ψψ0)2 to keep the nitrates species planar, where r0, θ0, ψ0 are the equilibrium parameters of the bond, and Kb, Kθ, Kψ are the prefactors.
    下载: 导出CSV

    表  2  石墨烯−硝酸盐复合材料界面热导G

    Table  2.   Thermal conductance G of graphene/nitrates composites

    θ/(°)9075604530150
    J/(109 W·m−2) 2.16 2.49 2.65 2.63 2.74 2.85 2.91
    ΔT/K 46.59 44.87 45.64 41.10 39.23 37.26 36.36
    G/(MW·m−2·K−1) 46.36 55.49 58.06 63.99 69.84 76.48 80.03
    下载: 导出CSV
  • [1] 武延泽, 王敏, 李锦丽, 等. 纳米材料改善硝酸熔盐传蓄热性能的研究进展[J]. 材料工程, 2020, 48(1):10-18. doi: 10.11868/j.issn.1001-4381.2018.001380

    WU Yanze, WANG Min, LI Jinli, et al. Research progress in improving heat transfer and heat storage performance of molten nitrate by nanomaterials[J]. Journal of Materials Engineering,2020,48(1):10-18(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.001380
    [2] HUANG Y, CHENG X, LI Y, et al. Effect of in-situ synthesized nano-MgO on thermal properties of NaNO3-KNO3[J]. Solar Energy,2018,160:208-215. doi: 10.1016/j.solener.2017.11.077
    [3] CHENG X, HUANG Y, WANG X, et al. Preparation and properties of in-situ synthesized nanoparticles in NaNO3-KNO3[C]. AIP Conference Proceedings, AIP Publishing LLC, 2019.
    [4] HAMDY E, SAAD L, ABULFOTUH F, et al. Enhancement of molten nitrate thermal properties by reduced graphene oxide and graphene quantum dots[J]. ACS Omega,2020,5(34):21345-21354. doi: 10.1021/acsomega.0c01291
    [5] SARANPRABHU M K, CHANDINI D, BHARATHIDASAN P, et al. Lowered total solidification time and increased discharge rate of reduced graphene oxide-solar salt compo-sites: Potential for deployment in latent heat thermal energy storage system[J]. Solar Energy,2020,204:466-475. doi: 10.1016/j.solener.2020.04.072
    [6] 刘义林, 高原, 鲍建设, 等. 功能化石墨烯掺杂熔盐的制备及性能研究[J]. 无机盐工业, 2016, 48(7):16-20.

    LIU Yilin, GAO Yuan, BAO Jianshe, et al. Studies on prepa-ration and properties of functionalizing graphene doped molten salt composites[J]. Inorganic Chemicals Industry,2016,48(7):16-20(in Chinese).
    [7] LI Q, GUO Y, LI W, et al. Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite[J]. Chemistry of Materials,2014,26(15):4459-4465. doi: 10.1021/cm501473t
    [8] RENTERIA J, LEGEDZA S, SALGADO R, et al. Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications[J]. Materials & Design,2015,88:214-221.
    [9] LIU P, LI X, MIN P, et al. 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness[J]. Nano-Micro Letters,2021,13(1):1-15. doi: 10.1007/s40820-020-00525-y
    [10] 刘思思, 童佳威, 张言. 硅基双层复合自组装分子膜结构特性及其润湿行为的分子动力学模拟[J]. 复合材料学报, 2018, 35(2):468-475.

    LIU Sisi, TONG Jiawei, ZHANG Yan. Molecular dynamics simulation of structural properties and wetting behavior of silicon based dual composite self-assembled monolayers[J]. Acta Materiae Compositae Sinica,2018,35(2):468-475(in Chinese).
    [11] 高俊国, 孙伟峰, 李明, 等. 石墨纳米片/聚乙烯复合物分子动力学模拟[J]. 复合材料学报, 2018, 35(8):2274-2285.

    GAO Junguo, SUN Weifeng, LI Ming, et al. Molecular dynamics simulation of graphite-nanoplatelet/polyethylene composites[J]. Acta Materiae Compositae Sinica,2018,35(8):2274-2285(in Chinese).
    [12] MARTÍNEZ L, ANDRADE R, BIRGIN E G, et al. PACKMOL: A package for building initial configurations for molecular dynamics simulations[J]. Journal of Computational Che-mistry,2009,30(13):2157-2164. doi: 10.1002/jcc.21224
    [13] STUART S J, TUTEIN A B, HARRISON J A. A reactive potential for hydrocarbons with intermolecular interactions[J]. The Journal of Chemical Physics,2000,112(14):6472-6486. doi: 10.1063/1.481208
    [14] 华军, 宋郴, 段志荣, 等. 石墨烯/铜复合材料剪切性能的分子动力学模拟[J]. 复合材料学报, 2018, 35(3):632-639.

    HUA Jun, SONG Chen, DUAN Zhirong, et al. Molecular dynamics simulations of the shear mechanical properties of graphene/copper composites[J]. Acta Materiae Compositae Sinica,2018,35(3):632-639(in Chinese).
    [15] ANAGNOSTOPOULOS A, ALEXIADIS A, DING Y. Molecular dynamics simulation of solar salt (NaNO3-KNO3) mixtures[J]. Solar Energy Materials and Solar Cells,2019,200:109897. doi: 10.1016/j.solmat.2019.04.019
    [16] HU G, CAO B. Thermal resistance between crossed carbon nanotubes: molecular dynamics simulations and analytical modeling[J]. Journal of Applied Physics,2013,114(22):224308. doi: 10.1063/1.4842896
    [17] JUSSILA H, YANG H, GRANQVIST N, et al. Surface plasmon resonance for characterization of large-area atomic-layer graphene film[J]. Optica,2016,3(2):151. doi: 10.1364/OPTICA.3.000151
    [18] PFLEGER N, BAUER T, MARTIN C, et al. Thermal energy storage-overview and specific insight into nitrate salts for sensible and latent heat storage[J]. Beilstein Journal of Nanotechnology,2015,6:1487-1497. doi: 10.3762/bjnano.6.154
    [19] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics,1995,117(1):1-19. doi: 10.1006/jcph.1995.1039
    [20] STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool[J]. Modelling and Simulation in Materials Science and Engi-neering,2009,18(1):15012.
    [21] 杜宝强. 硝酸熔盐储能材料的制备及热物性研究[D]. 西宁: 中国科学院大学(中国科学院青海盐湖研究所), 2017.

    DU Baoqiang. Research on preparation and thermophysical properties of molten nitrate salt energy storage materials[D]. Xining: Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 2017(in Chinese).
    [22] LUO T F, LLOYD J R. Enhancement of thermal energy transport across graphene/graphite and polymer interfaces: A molecular dynamics study[J]. Advanced Functional Materials,2012,22(12):2495-2502. doi: 10.1002/adfm.201103048
    [23] 于伟, 谢华清. 氧化石墨烯膜各向异性热传输特性研究[J]. 工程热物理学报, 2012, 33(9):1609-1611.

    YU Wei, XIE Huaqing. Anisotropic thermal transport in graphene oxide films[J]. Journal of Engineering Thermophysics,2012,33(9):1609-1611(in Chinese).
    [24] RENTERIA J D, RAMIREZ S, MALEKPOUR H, et al. Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature[J]. Advanced Functional Materials,2015,25(29):4664-4672. doi: 10.1002/adfm.201501429
    [25] GAO J, WU H, LI A, et al. Graphene nanofluids as thermal management materials: Molecular dynamics study on orientation and temperature effects[J]. ACS Applied Nano Materials,2019,2(11):6828-6835. doi: 10.1021/acsanm.9b01266
    [26] LIU B, MENG F, REDDY C D, et al. Thermal transport in a graphene-MoS2 bilayer heterostructure: A molecular dynamics study[J]. RSC advances,2015,5(37):29193-29292. doi: 10.1039/C4RA16891G
    [27] CUI W, SHEN Z, YANG J, et al. Molecular dynamics simulation on the microstructure of absorption layer at the liquid–solid interface in nanofluids[J]. International Communications in Heat and Mass Transfer,2016,71:75-85. doi: 10.1016/j.icheatmasstransfer.2015.12.023
    [28] LV J, CUI W, BAI M, et al. Molecular dynamics simulation on flow behavior of nanofluids between flat plates under shear flow condition[J]. Microfluidics and Nanofluidics,2011,10(2):475-480. doi: 10.1007/s10404-010-0684-2
    [29] MERAL C, BENMORE C, MONTEIRO P J. The study of disorder and nanocrystallinity in C–S–H, supplementary cementitious materials and geopolymers using pair distribution function analysis[J]. Cement and Concrete Research,2011,41(7):696-710. doi: 10.1016/j.cemconres.2011.03.027
    [30] NAN C, BIRRINGER R, CLARKE D R, et al. Effective thermal conductivity of particulate composites with interfacial thermal resistance[J]. Journal of Applied Physics,1997,81(10):6692-6699. doi: 10.1063/1.365209
    [31] OU E, LI X, LEE S, et al. Four-probe measurement of thermal transport in suspended few-layer graphene with polymer residue[J]. Journal of Heat Transfer,2019,141(6):4043167.
    [32] HAJILAR S, SHAFEI B. Multiscale investigation of interfacial thermal properties of n-octadecane enhanced with multilayer graphene[J]. The Journal of Physical Chemistry C,2019,123(38):23297-23305. doi: 10.1021/acs.jpcc.9b03042
    [33] 李茂源. 石墨烯/环氧树脂复合材料的力学与热学性能模拟[D]. 武汉: 华中科技大学, 2019.

    LI Maoyuan. A simulations of the mechanical and thermal properties of graphene/epoxy nanocomposites[D]. Wuhan: Huazhong University of Science & Technology, 2019(in Chinese).
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1411
  • HTML全文浏览量:  479
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-23
  • 修回日期:  2021-05-30
  • 录用日期:  2021-06-09
  • 网络出版日期:  2021-06-16
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回