Effect of graphene orientation on heat transfer properties of graphene/nitrates composites by molecular dynamics simulation
-
摘要: 采用非平衡分子动力学(NEMD)方法,以二元硝酸盐Solar salt(NaNO3和KNO3质量比为6∶4) 为基体,石墨烯为填料,研究了石墨烯取向对石墨烯/硝酸盐复合材料界面热导的影响。研究发现,随着石墨烯平面与热流方向夹角的减小,体系热流密度升高、温差下降,界面热导从46.36 MW·m−2·K−1提升至80.03 MW·m−2·K−1。对复合材料中的原子振动态密度和微观结构进行表征,结果发现,随着石墨烯与热流夹角减小,界面处的热流从跨石墨烯平面运输转变为沿石墨烯平面的高效率运输,且加入石墨烯后硝酸盐会形成密度较大的致密层结构。同时,采用有效介质理论拟合了微观尺寸的石墨烯/硝酸盐复合材料热导率,结果表明,石墨烯平行于热流方向时复合材料热导率最高,且增加石墨烯体积分数及长度均有助于复合材料热导率的增强。Abstract: The effects of the graphene orientation on interfacial thermal conductivity of graphene/nitrate compo-sites with binary nitrate Solar salt(NaNO3/KNO3 mass ratio of 6∶4) as substrate and graphene as filler was investi-gated by non-equilibrium molecular dynamics (NEMD) method. It is shown that the interfacial thermal conductance can be considerably enhanced from 46.36 MW·m−2·K−1 to 80.03 MW·m−2·K−1 as the angle θ between the graphene surface and the heat flux direction (i.e., z direction) decreases from 90° to 0°. As the angle θ decreases, the effective projection of the graphene plane in the direction of heat flow is enhanced, and more heat will be transported along the graphene plane. The results of the vibrational density of state (DOS) clearly signify that heat flow at the interface changes from transport across the graphene plane to efficient transport along the graphene plane with the decrease of angle between graphene and heat flow. Moreover, the nitrates form a similar dense layer around the graphene for all different orientation angles, which would also promote the enhancement of the thermal conductance. Finally, the thermal conductivity of the graphene/nitrates composites with different orientations at the microscale is predicted by the effective medium theory. It is found that the thermal conductivity of the composite decreases with the orientation angle, but increases with the volume fraction and the length of the graphene.
-
图 8 石墨烯/硝酸盐复合材料热导率随填料体积分数f的变化(石墨烯长度L=1.5 μm) (a) 及随填石墨烯长度L的变化(填料体积分数f=0.5vol%) (b)
Figure 8. Thermal conductivity of graphene/nitrates composites as a function of the volume fraction f with the graphene length L=1.5 μm (a) and as a function of the graphene length L with the volume fraction f=0.5vol% (b)
表 1 石墨烯/硝酸盐复合材料势函数参数
Table 1. Potential parameters of graphene/nitrates composites
Atom ε/meV σ/nm q/e N 4.018 0.3431 0.95 O 3.469 0.3285 −0.65 K 4.336 0.3188 1 Na 6.637 0.2407 1 C 2.968 0.3407 0 Atoms N−O Kb=22.766 eV·nm−2 r0=0.1268nm O−N−O Kθ=4.553 eV·rad−2 θ0=120° N−O−O−O Kψ=2.602 eV·rad−2 ψ0=0° Notes: ε—Unit of energy indicating the strength of the interaction between atoms; σ—Atomic spacing when the i atom interacts with the j atom is 0; q—Atomic charge; Harmonic parameters consist of bonds computed as Vb=Kb(r−r0)2, angles computed as Vθ=Kθ(θ−θ0)2, and an improper function of the form Vψ=Kψ(ψ−ψ0)2 to keep the nitrates species planar, where r0, θ0, ψ0 are the equilibrium parameters of the bond, and Kb, Kθ, Kψ are the prefactors. 表 2 石墨烯−硝酸盐复合材料界面热导G
Table 2. Thermal conductance G of graphene/nitrates composites
θ/(°) 90 75 60 45 30 15 0 J/(109 W·m−2) 2.16 2.49 2.65 2.63 2.74 2.85 2.91 ΔT/K 46.59 44.87 45.64 41.10 39.23 37.26 36.36 G/(MW·m−2·K−1) 46.36 55.49 58.06 63.99 69.84 76.48 80.03 -
[1] 武延泽, 王敏, 李锦丽, 等. 纳米材料改善硝酸熔盐传蓄热性能的研究进展[J]. 材料工程, 2020, 48(1):10-18. doi: 10.11868/j.issn.1001-4381.2018.001380WU Yanze, WANG Min, LI Jinli, et al. Research progress in improving heat transfer and heat storage performance of molten nitrate by nanomaterials[J]. Journal of Materials Engineering,2020,48(1):10-18(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.001380 [2] HUANG Y, CHENG X, LI Y, et al. Effect of in-situ synthesized nano-MgO on thermal properties of NaNO3-KNO3[J]. Solar Energy,2018,160:208-215. doi: 10.1016/j.solener.2017.11.077 [3] CHENG X, HUANG Y, WANG X, et al. Preparation and properties of in-situ synthesized nanoparticles in NaNO3-KNO3[C]. AIP Conference Proceedings, AIP Publishing LLC, 2019. [4] HAMDY E, SAAD L, ABULFOTUH F, et al. Enhancement of molten nitrate thermal properties by reduced graphene oxide and graphene quantum dots[J]. ACS Omega,2020,5(34):21345-21354. doi: 10.1021/acsomega.0c01291 [5] SARANPRABHU M K, CHANDINI D, BHARATHIDASAN P, et al. Lowered total solidification time and increased discharge rate of reduced graphene oxide-solar salt compo-sites: Potential for deployment in latent heat thermal energy storage system[J]. Solar Energy,2020,204:466-475. doi: 10.1016/j.solener.2020.04.072 [6] 刘义林, 高原, 鲍建设, 等. 功能化石墨烯掺杂熔盐的制备及性能研究[J]. 无机盐工业, 2016, 48(7):16-20.LIU Yilin, GAO Yuan, BAO Jianshe, et al. Studies on prepa-ration and properties of functionalizing graphene doped molten salt composites[J]. Inorganic Chemicals Industry,2016,48(7):16-20(in Chinese). [7] LI Q, GUO Y, LI W, et al. Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite[J]. Chemistry of Materials,2014,26(15):4459-4465. doi: 10.1021/cm501473t [8] RENTERIA J, LEGEDZA S, SALGADO R, et al. Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications[J]. Materials & Design,2015,88:214-221. [9] LIU P, LI X, MIN P, et al. 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness[J]. Nano-Micro Letters,2021,13(1):1-15. doi: 10.1007/s40820-020-00525-y [10] 刘思思, 童佳威, 张言. 硅基双层复合自组装分子膜结构特性及其润湿行为的分子动力学模拟[J]. 复合材料学报, 2018, 35(2):468-475.LIU Sisi, TONG Jiawei, ZHANG Yan. Molecular dynamics simulation of structural properties and wetting behavior of silicon based dual composite self-assembled monolayers[J]. Acta Materiae Compositae Sinica,2018,35(2):468-475(in Chinese). [11] 高俊国, 孙伟峰, 李明, 等. 石墨纳米片/聚乙烯复合物分子动力学模拟[J]. 复合材料学报, 2018, 35(8):2274-2285.GAO Junguo, SUN Weifeng, LI Ming, et al. Molecular dynamics simulation of graphite-nanoplatelet/polyethylene composites[J]. Acta Materiae Compositae Sinica,2018,35(8):2274-2285(in Chinese). [12] MARTÍNEZ L, ANDRADE R, BIRGIN E G, et al. PACKMOL: A package for building initial configurations for molecular dynamics simulations[J]. Journal of Computational Che-mistry,2009,30(13):2157-2164. doi: 10.1002/jcc.21224 [13] STUART S J, TUTEIN A B, HARRISON J A. A reactive potential for hydrocarbons with intermolecular interactions[J]. The Journal of Chemical Physics,2000,112(14):6472-6486. doi: 10.1063/1.481208 [14] 华军, 宋郴, 段志荣, 等. 石墨烯/铜复合材料剪切性能的分子动力学模拟[J]. 复合材料学报, 2018, 35(3):632-639.HUA Jun, SONG Chen, DUAN Zhirong, et al. Molecular dynamics simulations of the shear mechanical properties of graphene/copper composites[J]. Acta Materiae Compositae Sinica,2018,35(3):632-639(in Chinese). [15] ANAGNOSTOPOULOS A, ALEXIADIS A, DING Y. Molecular dynamics simulation of solar salt (NaNO3-KNO3) mixtures[J]. Solar Energy Materials and Solar Cells,2019,200:109897. doi: 10.1016/j.solmat.2019.04.019 [16] HU G, CAO B. Thermal resistance between crossed carbon nanotubes: molecular dynamics simulations and analytical modeling[J]. Journal of Applied Physics,2013,114(22):224308. doi: 10.1063/1.4842896 [17] JUSSILA H, YANG H, GRANQVIST N, et al. Surface plasmon resonance for characterization of large-area atomic-layer graphene film[J]. Optica,2016,3(2):151. doi: 10.1364/OPTICA.3.000151 [18] PFLEGER N, BAUER T, MARTIN C, et al. Thermal energy storage-overview and specific insight into nitrate salts for sensible and latent heat storage[J]. Beilstein Journal of Nanotechnology,2015,6:1487-1497. doi: 10.3762/bjnano.6.154 [19] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics,1995,117(1):1-19. doi: 10.1006/jcph.1995.1039 [20] STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool[J]. Modelling and Simulation in Materials Science and Engi-neering,2009,18(1):15012. [21] 杜宝强. 硝酸熔盐储能材料的制备及热物性研究[D]. 西宁: 中国科学院大学(中国科学院青海盐湖研究所), 2017.DU Baoqiang. Research on preparation and thermophysical properties of molten nitrate salt energy storage materials[D]. Xining: Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 2017(in Chinese). [22] LUO T F, LLOYD J R. Enhancement of thermal energy transport across graphene/graphite and polymer interfaces: A molecular dynamics study[J]. Advanced Functional Materials,2012,22(12):2495-2502. doi: 10.1002/adfm.201103048 [23] 于伟, 谢华清. 氧化石墨烯膜各向异性热传输特性研究[J]. 工程热物理学报, 2012, 33(9):1609-1611.YU Wei, XIE Huaqing. Anisotropic thermal transport in graphene oxide films[J]. Journal of Engineering Thermophysics,2012,33(9):1609-1611(in Chinese). [24] RENTERIA J D, RAMIREZ S, MALEKPOUR H, et al. Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature[J]. Advanced Functional Materials,2015,25(29):4664-4672. doi: 10.1002/adfm.201501429 [25] GAO J, WU H, LI A, et al. Graphene nanofluids as thermal management materials: Molecular dynamics study on orientation and temperature effects[J]. ACS Applied Nano Materials,2019,2(11):6828-6835. doi: 10.1021/acsanm.9b01266 [26] LIU B, MENG F, REDDY C D, et al. Thermal transport in a graphene-MoS2 bilayer heterostructure: A molecular dynamics study[J]. RSC advances,2015,5(37):29193-29292. doi: 10.1039/C4RA16891G [27] CUI W, SHEN Z, YANG J, et al. Molecular dynamics simulation on the microstructure of absorption layer at the liquid–solid interface in nanofluids[J]. International Communications in Heat and Mass Transfer,2016,71:75-85. doi: 10.1016/j.icheatmasstransfer.2015.12.023 [28] LV J, CUI W, BAI M, et al. Molecular dynamics simulation on flow behavior of nanofluids between flat plates under shear flow condition[J]. Microfluidics and Nanofluidics,2011,10(2):475-480. doi: 10.1007/s10404-010-0684-2 [29] MERAL C, BENMORE C, MONTEIRO P J. The study of disorder and nanocrystallinity in C–S–H, supplementary cementitious materials and geopolymers using pair distribution function analysis[J]. Cement and Concrete Research,2011,41(7):696-710. doi: 10.1016/j.cemconres.2011.03.027 [30] NAN C, BIRRINGER R, CLARKE D R, et al. Effective thermal conductivity of particulate composites with interfacial thermal resistance[J]. Journal of Applied Physics,1997,81(10):6692-6699. doi: 10.1063/1.365209 [31] OU E, LI X, LEE S, et al. Four-probe measurement of thermal transport in suspended few-layer graphene with polymer residue[J]. Journal of Heat Transfer,2019,141(6):4043167. [32] HAJILAR S, SHAFEI B. Multiscale investigation of interfacial thermal properties of n-octadecane enhanced with multilayer graphene[J]. The Journal of Physical Chemistry C,2019,123(38):23297-23305. doi: 10.1021/acs.jpcc.9b03042 [33] 李茂源. 石墨烯/环氧树脂复合材料的力学与热学性能模拟[D]. 武汉: 华中科技大学, 2019.LI Maoyuan. A simulations of the mechanical and thermal properties of graphene/epoxy nanocomposites[D]. Wuhan: Huazhong University of Science & Technology, 2019(in Chinese).