留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气氛烧结短切碳纤维增强硅基陶瓷型芯的致密化行为

陈义斯 芦刚 严青松 毛蒲 占红星 徐翩 廖青春

陈义斯, 芦刚, 严青松, 等. 气氛烧结短切碳纤维增强硅基陶瓷型芯的致密化行为[J]. 复合材料学报, 2022, 39(5): 2412-2420. doi: 10.13801/j.cnki.fhclxb.20210616.004
引用本文: 陈义斯, 芦刚, 严青松, 等. 气氛烧结短切碳纤维增强硅基陶瓷型芯的致密化行为[J]. 复合材料学报, 2022, 39(5): 2412-2420. doi: 10.13801/j.cnki.fhclxb.20210616.004
CHEN Yisi, LU Gang, YAN Qingsong, et al. Densification behavior in short carbon fiber reinforced silica-based ceramic cores via atmosphere sintering[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2412-2420. doi: 10.13801/j.cnki.fhclxb.20210616.004
Citation: CHEN Yisi, LU Gang, YAN Qingsong, et al. Densification behavior in short carbon fiber reinforced silica-based ceramic cores via atmosphere sintering[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2412-2420. doi: 10.13801/j.cnki.fhclxb.20210616.004

气氛烧结短切碳纤维增强硅基陶瓷型芯的致密化行为

doi: 10.13801/j.cnki.fhclxb.20210616.004
基金项目: 国家自然科学基金(51861027);江西省优势科技创新团队重点项目(20181BCB19001)
详细信息
    通讯作者:

    芦刚,博士,副教授,研究方向为液态金属精密成形理论及工艺 Email:aimulalg@163.com

  • 中图分类号: TG249

Densification behavior in short carbon fiber reinforced silica-based ceramic cores via atmosphere sintering

  • 摘要: 为获得满足高温合金单晶叶片熔模精密铸造用高性能陶瓷型芯,本论文采用超声振动和机械搅拌将短切碳纤维(Csf)均匀分散在SiO2基陶瓷浆料中,通过压注法制备型芯生坯并分别在空气和氮气中烧结。观察并分析升温过程中型芯的组织演变及物相转化规律,揭示两种气氛下Csf增强型芯的烧结致密化行为。结果表明,立体互锁Csf网络可以增加陶瓷颗粒之间传质距离,在提供碳源生成原位SiC晶体的同时影响方石英析晶,进而抑制高温下固相的扩散和迁移以及液相的黏性流动。在两种烧结气氛下,随Csf含量的增加,硅基陶瓷型芯的气孔率逐渐上升,收缩率逐渐下降。当Csf含量为1.5vol%时,空气和氮气气氛烧结试样获得的开气孔率最大值为42.95%、39.50%,而最低的收缩率分别为0.64%、0.48%,证实了Csf及高熔点晶体对型芯烧结的致密化行为影响显著。

     

  • 图  1  短切碳纤维表面微观形貌:(a) 低倍SEM图像; (b) 局部放大图像

    Figure  1.  Surface morphology of chopped carbon fiber: (a) Low magnification SEM image; (b) Regional enlargement

    图  2  短切碳纤维(Csf)增强硅基陶瓷型芯制备工艺流程图

    Figure  2.  Preparation process of chopped carbon fibers (Csf) reinforced silica-based ceramic cores samples

    HPMC—Methyl cellulose

    图  3  Csf增强硅基陶瓷型芯烧成温度系统曲线

    Figure  3.  Sintering temperature system curve of Csf reinforced silica-based ceramic cores

    图  4  硅基陶瓷型芯生坯断口:(a) 低倍SEM图像; (b) 高倍SEM图像

    Figure  4.  Fracture morphology of green silica-based ceramic cores: (a) Low magnification SEM image; (b) High magnification SEM image

    图  5  空气和氮气气氛中不同煅烧温度下硅基陶瓷型芯的断口形貌

    Figure  5.  Fracture morphology of silica-based ceramic cores in air and N2 sintering atmosphere at different temperature

    图  6  空气 (a) 和氮气 (b) 烧结气氛下Csf含量为1.5vol%的硅基陶瓷型芯的XRD图谱

    Figure  6.  XRD patterns of silica-based ceramic cores at Csf content of 1.5vol% in air (a) and N2 (b) sintering atmosphere

    图  7  不同Csf含量陶瓷型芯的开气孔率

    Figure  7.  Open porosities of ceramic cores with different Csf contents

    图  8  不同Csf含量陶瓷型芯收缩率

    Figure  8.  Shrinkage of ceramic cores with different Csf contents

    图  9  硅基陶瓷型芯的烧结致密化演变机制示意图

    Figure  9.  Schematic illustration of evolution mechanism for silica-based ceramic cores densification

    表  1  石英玻璃化学成分

    Table  1.   Chemical components of quartz glass

    Quartz glassChemical components
    SiO2Al2O3MgOFe2O3K2ON2OCaOTiO2
    Different oxide contents/wt%99.700.070.030.030.010.010.010.01
    下载: 导出CSV

    表  2  锆英石粉化学成分

    Table  2.   Chemical components of zircon powders

    Zircon powdersChemical components
    (Zr, Hr)O2SiO2Fe2O3TiO2
    Different oxide contents/wt%≥66%≤32.00≤0.12≤0.15
    下载: 导出CSV

    表  3  聚丙烯腈(PAN)碳纤维主要特性

    Table  3.   Typical properties of polyacrylonitrile (PAN)-based carbon fiber

    Length/mmDiameter/μmTensile strength/GPaYoung’s modulus/GPaDensity/(g·cm−3)
    4 5-7 3.28 201.1 1.76
    下载: 导出CSV
  • [1] PADTURE N P, CELL M, JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science,2002,296(5566):280-284. doi: 10.1126/science.1068609
    [2] WALALE A, CHAUHAN A S, SATYANARAYNAA A, et al. Analysis of shrinkage & warpage in ceramic injection molding of HPT vane leading edge core of a gas turbine casting[J]. Materials Today: Proceedings,2018(5):19471-19479.
    [3] KANYO J E, SCHAFFONER S, UWANYUZE R S, et al. An overview of ceramic molds for investment casting of nickel superalloys[J]. Journal of the European Ceramic Society,2020,40(15):4955-4973. doi: 10.1016/j.jeurceramsoc.2020.07.013
    [4] WERESZCZAK A A, BREDER K, FERBER M K, et al. Dimensional changes and creep of silica core ceramics used in investment casting of superalloys[J]. Journal of Materials Science,2002(37):4235-4245.
    [5] YANG Z, ZHAO Z, YU J, et al. Preparation of silica ceramic cores by the preceramic pyrolysis technology using sili-cone resin as precursor and binder[J]. Materials Che-mistry and Physics,2019,223:676-682. doi: 10.1016/j.matchemphys.2018.11.039
    [6] 覃业霞, 张睿, 杜爱兵, 等. 粉料粒度对氧化铝基陶瓷型芯材料性能的影响[J]. 复合材料学报, 2007, 36(1):711-713.

    QIN Yexia, ZHANG Rui, DU Aibing, et al. Effect of particle size on properties of almina-based ceramic cores[J]. Acta Materiae Compositae Sinica,2007,36(1):711-713(in Chinese).
    [7] KIM Y H, YEO J G, LEE J S, et al. Influence of silicon carbide as a mineralizer on mechanical and thermal properties of silica-based ceramic cores[J]. Ceramics International,2016,42(13):14738-14742. doi: 10.1016/j.ceramint.2016.06.100
    [8] JIGNG W, LI K, XIAO J, et al. Effect of silica fiber on the mechanical and chemical behavior of alumina-based ceramic core material[J]. Journal of Asian Ceramic Socie-ties,2018,5(4):410-417.
    [9] LV K, LIU X, DU Z, et al. Properties of hybrid fibre reinforced shell for investment casting[J]. Ceramics International,2016,42(14):15397-15404. doi: 10.1016/j.ceramint.2016.06.188
    [10] 芦刚, 于航, 严青松, 等. Al2O3纤维对SiO2基陶瓷型芯的烧缩阻滞[J]. 复合材料学报, 2018, 35(1):168-172.

    LU Gang, YU Hang, YAN Qingsong, et al. Effect of Al2O3 fiber on shrinkage blocking of SiO2 matrix ceramic cores[J]. Acta Materiae Compositae Sinica,2018,35(1):168-172(in Chinese).
    [11] 芦刚, 查军辉, 严青松, 等. PA66纤维含量对多孔铝基陶瓷型芯气孔率的影响[J]. 材料工程, 2020, 48(7):170-175.

    LU Gang, ZHA Junhui, YAN Qingsong, et al. Influence of PA66 fiber content on porosity of porous aluminum based ceramic core[J]. Journal of Materials Engineering,2020,48(7):170-175(in Chinese).
    [12] 于航. PA66/Al2O3纤维增强多孔铝基陶瓷型芯的制备及性能研究[D]. 南昌: 南昌航空大学, 2017.

    YU Hang. Preparation and properties of PA66/Al2O3 fiber reinfoced porous aluminum-based ceramic core[D]. Nanchang: Nanchang Hangkong University, 2017(in Chinese).
    [13] NEWCOMB B A. Processing, structure, and properties of carbon fibers [J]. Composites Part A: Applied Science and Manufacturing, 2016, 91: 262-282.
    [14] TANG S, DENG J, WANG S, et al. Ablation behaviors of ultra-high temperature ceramic composites[J]. Materials Science and Engineering: A,2007,465(1/2):1-7. doi: 10.1016/j.msea.2007.02.040
    [15] YANG Z, YIN Z, ZHAO Z, et al. Microstructure and properties of SiO2-based ceramic cores with ball-shaped powders by the preceramic polymer technique in N2 atmosphere[J]. Materials Chemistry and Physics,2020,243:122609. doi: 10.1016/j.matchemphys.2019.122609
    [16] LI H, LIU Y, LIU Y, et al. Evolution of the microstructure and mechanical properties of stereolithography formed alumina cores sintered in vacuum[J]. Journal of the European Ceramic Society,2020,40(14):4825-4836. doi: 10.1016/j.jeurceramsoc.2019.11.047
    [17] WANG X, ZHOU Y, ZHOU L, et al. Microstructure and pro-perties evolution of silicon-based ceramic cores fabricated by 3D printing with stair-stepping effect control[J]. Jour-nal of the European Ceramic Society,2021,41(8):4650-4657. doi: 10.1016/j.jeurceramsoc.2021.03.036
    [18] KUCZYNSKI G C. Self-diffusion in sintering of metallic particles[M]. Springer, Dordrecht, 1990: 509-527.
    [19] TELLE R, GREFFRATH F, PRIELER R. Direct observation of the liquid miscibility gap in the zirconia-silica system[J]. Journal of the European Ceramic Society,2015,35(14):3995-4004. doi: 10.1016/j.jeurceramsoc.2015.07.015
    [20] CHEN J P, KONG Q J, LIU Q Q, et al. High yield silicon carbide whiskers from rice husk ash and graphene: Growth method and thermodynamics[J]. ACS Sustainable Che-mistry & Engineering,2019,23(7):19027-19033.
    [21] ZHANG N L, YANG J F, DENG Y C, et al. Preparation and properties of reaction bonded silicon carbide (RB-SiC) ceramics with high SiC percentage by two-step sintering using compound carbon sources[J]. Ceramics Interna-tional,2019,45(12):15715-15719. doi: 10.1016/j.ceramint.2019.04.224
    [22] PAN J, YAN X, CHENG X, et al. In situ synthesis and electrical properties of porous SiOC ceramics decorated with SiC nanowires[J]. Ceramics International,2016,42(10):12345-12351. doi: 10.1016/j.ceramint.2016.05.007
    [23] CHU Y, JING S, CHEN J. In situ synthesis of homoge-neously dispersed SiC nanowires in reaction sintered silicon-based ceramic powders[J]. Ceramics International,2018,44(6):6681-6685. doi: 10.1016/j.ceramint.2018.01.080
    [24] 占红星, 芦刚, 严青松, 等. 预加方石英含量对SiO2基陶瓷型芯高温蠕变性能的影响[J]. 复合材料学报, 2018, 38(5):1588-1593.

    ZHAN Hongxing, LU Gang, YAN Qingsong, et al. Effect of pre-added cristobalite content on high temperature creep properties of silicon-based cermaic core[J]. Acta Materiae Compositae Sinica,2018,38(5):1588-1593(in Chinese).
    [25] KAZEMI A, FAGHIHI S M A, ALIZDEH H R. Investigation on cristobalite crystallization in silica-based ceramic cores for investment casting[J]. Journal of the European Ceramic Society,2013,33(15/16):3397-3402. doi: 10.1016/j.jeurceramsoc.2013.06.025
    [26] YOSHIZAWA K, SEMOTO T, HITAOKA S, et al. Synergy of electrostatic and van der waals interactions in the adhesion of epoxy resin with carbon-fiber and glass surfaces[J]. Bulletin of the Chemical Society of Japan,2017,90(5):500-505. doi: 10.1246/bcsj.20160426
    [27] SMEACETTO F, FERRARIS M, SALVO M, et al. Protective coatings for carbon bonded carbon fibre composites[J]. Ceramics International,2008,34(5):1297-1301. doi: 10.1016/j.ceramint.2007.03.012
    [28] 芦刚, 毛蒲, 严青松, 等. 超声振荡和羟丙基甲基纤维素对短切纤维在精铸硅溶胶浆料中分散性能的影响[J]. 材料工程, 2016, 44(1):71-76. doi: 10.11868/j.issn.1001-4381.2016.01.011

    LU Gang, MAO Pu, YAN Qingsong, et al. Effect of ultra-sonic vibration and hydroxypropyl methyl cellulose on disperison of short fiber in silica sol slurry for inverstment casting[J]. Journal of Materials Engineering,2016,44(1):71-76(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.01.011
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  922
  • HTML全文浏览量:  457
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-29
  • 修回日期:  2021-05-27
  • 录用日期:  2021-06-10
  • 网络出版日期:  2021-06-16
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回