留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnO@RGO复合材料的制备及其吸波性能

熊自明 吴凡 张中威 孙慜倩 马超 王涛

熊自明, 吴凡, 张中威, 等. ZnO@RGO复合材料的制备及其吸波性能[J]. 复合材料学报, 2022, 39(3): 1152-1162. doi: 10.13801/j.cnki.fhclxb.20210616.002
引用本文: 熊自明, 吴凡, 张中威, 等. ZnO@RGO复合材料的制备及其吸波性能[J]. 复合材料学报, 2022, 39(3): 1152-1162. doi: 10.13801/j.cnki.fhclxb.20210616.002
XIONG Ziming, WU Fan, ZHANG Zhongwei, et al. Preparation and wave absorption properties of ZnO@RGO composites[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1152-1162. doi: 10.13801/j.cnki.fhclxb.20210616.002
Citation: XIONG Ziming, WU Fan, ZHANG Zhongwei, et al. Preparation and wave absorption properties of ZnO@RGO composites[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1152-1162. doi: 10.13801/j.cnki.fhclxb.20210616.002

ZnO@RGO复合材料的制备及其吸波性能

doi: 10.13801/j.cnki.fhclxb.20210616.002
基金项目: 国家自然科学基金(51708553)
详细信息
    通讯作者:

    熊自明,博士,副教授,硕士生导师,研究方向为防护工程及材料 E-mail:xzm992311@163.com

  • 中图分类号: TB332

Preparation and wave absorption properties of ZnO@RGO composites

  • 摘要: 随着无线信息技术的飞速发展,电磁干扰问题日益突出,引起了全球的广泛关注。人体长时间暴露于电磁辐射下,会对中枢神经系统、心血管系统和视觉系统等造成不同程度的损伤。解决这一问题的关键在于开发能够吸收电磁波的材料。为了改善还原氧化石墨烯(RGO)的微波吸收性能,采用感应加热的方式成功获得四面体针状氧化锌(ZnO),并通过简单水热法制备了不同比例的ZnO@RGO复合材料。利用SEM、XRD和Raman分别对ZnO@RGO复合材料的形貌、尺寸和结构进行了分析,并且探讨了ZnO含量和石蜡填充量对其电磁参数和吸波性能的影响。ZnO∶GO质量比为3∶1时的ZnO@RGO复合材料拥有最为优异的吸波性能(−44.5 dB; 3 mm)。电磁参数表明ZnO@RGO复合材料的衰减机制可以归结为电导损耗和极化效应。ZnO@RGO复合材料具有较低的反射损耗值和较薄的厚度,在军事隐身领域具有很大的潜力。

     

  • 图  1  ZnO@RGO复合材料制备流程图

    Figure  1.  Sketch of the preparation of ZnO@RGO composites

    RGO—Reduced graphene oxide

    图  2  不同ZnO含量的ZnO@RGO复合材料的XRD图谱

    Figure  2.  XRD patterns of ZnO@RGO composites with different ZnO contents

    图  3  RGO和ZnO@RGO复合材料Raman图谱

    Figure  3.  Raman spectra of the RGO and ZnO@RGO composites

    图  4  不同ZnO质量比的ZnO@RGO复合材料的SEM图像

    Figure  4.  SEM images of ZnO@RGO composites with different ZnO mass ratios ((a) 1∶1; (b) 2∶1; (c) 3∶1; (d) 4∶1; (e) 5∶1)

    图  5  不同ZnO质量比的ZnO@RGO复合材料的反射损耗

    Figure  5.  Reflection loss of ZnO@RGO composites with different ZnO mass ratios((a)1∶1; (b) 2∶1; (c) 3∶1; (d) 4∶1; (e) 5∶1)

    图  6  不同石蜡填充量的ZnO@RGO复合材料的反射损耗

    Figure  6.  Reflection loss of ZnO@RGO composites with different paraffin filling contents ((a) 10wt%; (b) 15wt%; (c) 20wt%; (d) 25wt%; (e) 30wt%)

    图  7  不同ZnO和RGO质量比的ZnO@RGO复合材料的相对复介电常数:(a) 介电常数实部($ \varepsilon ^{'} $); (b) 介电常数虚部($ \varepsilon ^{''}$); (c) 介电损耗角正切tan$ {\delta }_{\varepsilon} $

    Figure  7.  Relative dielectric complex constant of ZnO@RGO composites with different mass ratios of ZnO and RGO: (a) Real part of the dielectric constant ($ \varepsilon ^{'} $); (b) Imaginary part of the dielectric constant ($ \varepsilon ^{''}$); (c) Tangent to the dielectric loss angle (tan$ {\delta }_{\varepsilon} $)

    图  8  不同石蜡填充量的ZnO@RGO复合材料的相对复介电常数:(a) 实部($ \varepsilon ^{'} $); (b) 虚部($ \varepsilon ^{''}$); (c) 介电损耗角正切tan$ {\delta }_{\varepsilon} $

    Figure  8.  Relative dielectric complex constant of ZnO@RGO composites with different paraffin filling contents: (a) Real part ($ \mathit{\varepsilon }^{'} $); (b) Imaginary part ($ \varepsilon ^{''}$); (c) Tangent to the dielectric loss angle (tan$ {\delta }_{\varepsilon} $)

    图  9  不同质量比例ZnO@RGO 复合材料的衰减常数(a)和阻抗匹配 (b); 试样3∶1的3D反射损耗图谱(c)和四分之一波长模型(d)

    Figure  9.  (a) Attenuation constant of ZnO@RGO composites with different mass ratios; (b) Impedance matching; erent mass ratios; 3D Reflection loss (c) and model of a 1/4 wavelength (d) of the samples with a filling proportion of 3∶1

    图  10  不同质量比例ZnO@RGO 复合材料的cole-cole曲线

    Figure  10.  Cole-cole curve of ZnO@RGO composites with different mass ratios ((a) 2∶1; (b) 3∶1; (c) 4∶1; (d) 5∶1)

    图  11  ZnO@RGO复合材料的吸波机制

    Figure  11.  Microwave absorption mechanism of ZnO@RGO composites

    表  1  近期文献报道的RGO基复合材料的吸波性能

    Table  1.   Microwave absorbing properties of RGO based composites in recent publications

    AbsorberLoading/wt%RL/dBBandwidth/GHzThickness/mmReferences
    Cocoon-like RGO 7 −29.05 5.27 2.00 [30]
    CeO2−RGO 50 −45.90 4.5 2.00 [31]
    RGO/MWCNTs/ZnFe2O4 50 −23.80 2.60 1.50 [32]
    MoS2/RGO 60 −67.10 5.92 1.95 [33]
    RGO/Ni 10 −39.03 4.30 2.00 [34]
    ZnO/RGO 75 −44.50 7.44 3.00 This study
    Notes: MWCNTs—Multiwalled carbon nanotube; RGO—Reduced graphene oxide.
    下载: 导出CSV
  • [1] WANG Y, GAO X, ZHANG W Z, et al. Synthesis of hierarchical CuS/RGO/PANI/Fe3O4 quaternary composite and enhanced microwave absorption performance[J]. Journal of Alloys and Compounds,2018,757:372-381. doi: 10.1016/j.jallcom.2018.05.080
    [2] LV H L, ZHANG H Q, JI G B, et al. Interface strategy to achieve tunable high frequency attenuation[J]. ACS Applied Materials Interfaces,2016,8(10):6529-6538. doi: 10.1021/acsami.5b12662
    [3] WU G L, CHENG Y H, REN Y Y, et al. Synthesis and characterization of γ-Fe2O3@C nanorod-carbon sphere compo-site and its application as microwave absorbing material[J]. Journal of Alloys and Compounds,2015,652(15):346-350.
    [4] HAN S J, WANG S Y, LI W H, et al. Synthesis of PPy/Ni/RGO and enhancement on its electromagnetic wave absorption performance[J]. Ceramics International,2018,44(9):10352-10361. doi: 10.1016/j.ceramint.2018.03.046
    [5] QU B, ZHU C, LI C, ZHANG X, et al. Coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material[J]. ACS Applied Materials Interfaces,2016,8(6):3730-3735. doi: 10.1021/acsami.5b12789
    [6] XIA L, ZHANG X Y, YANG Y N, et al. Enhanced electromagnetic wave absorption properties of laminated SiCNW-Cf/lithium-aluminume-silicate (LAS) composites[J]. Journal of Alloys and Compounds,2018,748(5):154-162.
    [7] CHEN Z P, XU C, MA C Q, et al. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding[J]. Advanced Materials,2013,25(9):1296-1300. doi: 10.1002/adma.201204196
    [8] QING Y, ZHOU W, LUO F, et al. Microwave electromagnetic properties of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coating[J]. Physica B: Condensed Matter,2010,405(4):1181-1184. doi: 10.1016/j.physb.2009.11.032
    [9] DING D H, LUO F, ZHOU W C, et al. Research status and outlook of high temperature radar absorbing materials[J]. Journal of Inorganic Materials,2014,29(5):461-169.
    [10] SHEN W, REN B Y, WU S Z, et al. Facile synthesis of rGO/SmFe5O12/CoFe2O4 ternary nanocomposites: Composition control for superior broadband microwave absorption performance[J]. Applied Surface Science,2018,453(30):464-476.
    [11] ALI K, IQBAL J, JAN T, et al. Synthesis of CuFe2O4-ZnO nanocomposites with enhanced electromagnetic wave absorption properties[J]. Journal of Alloys and Compounds,2017,705(25):559-565.
    [12] LUO J, XU Y, YAO W, et al. Synthesis and microwave absorption properties of reduced graphene oxide-magnetic porous nanospheres-polyaniline com-posites[J]. Composites Science and Technology,2015,117(29):315-321.
    [13] FU M, JIAO Q, ZHAO Y, et al. Vapor diffusion synthesis of CoFe2O4 hollow sphere/graphene composites as absorbing materials[J]. Journal of Materials Chemistry A,2014,2(3):735-744. doi: 10.1039/C3TA14050D
    [14] LIAO L, PENG H L, LIU Z F, et al. Chemistry makes graphene beyond graphene[J]. Journal of American Che-mistry Society,2014,136(35):12194-12200. doi: 10.1021/ja5048297
    [15] SU Z B, TAN L, TAO J, et al. Enhanced microwave absorption properties of FeNi nanocrystals decorating reduced graphene oxide[J]. Physical Status Solidi B,2018,255(6):1700553-1700556. doi: 10.1002/pssb.201700553
    [16] SU Z B, TAO J, XIANG J Y, et al. Structure evolution and microwave absorption properties of nickel nanoparticles incorporated carbon spheres[J]. Materials Research Bulletin,2016,84:445-448. doi: 10.1016/j.materresbull.2016.08.036
    [17] WEN F S, HOU H, XIANG J Y, et al. Fabrication of carbon encapsulated Co3O4 nanoparticles embedded in porous graphitic carbon nanosheets for microwave absorber[J]. Carbon,2015,89:372-377. doi: 10.1016/j.carbon.2015.03.057
    [18] LU M M, CAO W Q, SHI H L, et al. Multi-wall carbon nano-tubes decorated with ZnO nanocrystals: mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature[J]. Journal of Materials Chemistry A,2014,2(27):10540-10547. doi: 10.1039/c4ta01715c
    [19] ZHANG L, ZHANG X H, ZHANG G J, et al. Investigation on the optimization, design and microwave absorption pro-perties of reduced graphene oxide/tetrapod-like ZnO composites[J]. RSC Advances,2015,5(14):10197-10203. doi: 10.1039/C4RA12591F
    [20] LIU J, CAO W Q, JIN H B, et al. Enhanced permittivity and multi-region microwave absorption of nanoneedle-like ZnO in the X-band at elevated temperature[J]. Journal of Materials Chemistry C,2015,3(18):4670-4677. doi: 10.1039/C5TC00426H
    [21] CHEN X Y, GUO H C, WANG T, et al. In-situ fabrication of reduced graphene oxide (rGO)/ZnO heterostructure: surface functional groups induced electrical properties[J]. Electrochimica Acta,2016,196(1):558-564.
    [22] GE C, LI H J, LI M J, et al. Synthesis of a ZnO nanorod/CVD graphene composite for dihydroxybenzene isomers[J]. Carbon,2015,95:1-9. doi: 10.1016/j.carbon.2015.08.006
    [23] ZHANG B P, LU C X, Li H, et al. Improving microwave adsorption property of ZnO particle by doping graphene[J]. Materials Letters,2014,116(1):16-19.
    [24] QIN H, LIAO Q L, ZHANG G J, et al. Microwave absorption properties of carbon black and tetrapod-like ZnO whiskers composites[J]. Applied Surface Science,2013,286(1):7-11.
    [25] HU W B, LIU Y, WITHERS R L, FRANKCOMBE T J, et al. Electron-pinned defect-dipoles for high-performance colossal permittivity materials[J]. Nature Materials,2013,12(9):821-826. doi: 10.1038/nmat3691
    [26] QUAN B, LIU W, LIU Y S, et al. Quasi-noble-metal graphene quantum dots deposited stannic oxide with oxygen vacancies: synthesis and enhanced photocatalytic properties[J]. Journal of Colloid Interface Science,2016,481(1):13-19.
    [27] HAN M K, YIN X W, KONG L, et al. Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties[J]. Journal of Materials Chemistry A,2014,2(39):16403-16409. doi: 10.1039/C4TA03033H
    [28] FENG W, WANG Y M, CHEN J C, et al. Microwave absorbing property optimization of starlike ZnO/reduced graphene oxide doped by ZnO nanocrystal composites[J]. Physical Chemistry Chemical Physics,2017,19(22):14596-14605. doi: 10.1039/C7CP02039B
    [29] ZHAO G L, XIA L, WU S S, et al. Ultrafast and mass production of ZnO nanotetrapods by induction-heating under air ambient[J]. Materials Letters,2014,118(1):126-129.
    [30] SHAH A, WANG Y H, HUANG H, et al. Microwave absorption and flexural properties of Fe nanoparticle/carbon fiber/epoxy resin composite plates[J]. Composite Structure,2015,131(1):1132-1141.
    [31] WANG Z Q, ZHAO P F, HUANG H, et al. Cerium oxide immobilized reduced graphene oxide hybrids with excellent microwave absorbing performance[J]. Physical Chemistry Chemical Physics,2018,20(20):14155-14165. doi: 10.1039/C8CP00160J
    [32] SHU R W, LI W J, ZHOU X, et al. Facile preparation and microwave absorption properties of RGO/MWCNTs/ZnFe2O4 hybrid nanocomposites[J]. Journal of Alloys and Compounds,2018,743(30):163-174.
    [33] QUAN B, LIANG X H, XU G Y, et al. A permittivity regula-ting strategy to achieve high-performance electromagnetic wave absorbers with compatibility of impedance matching and energy conservation[J]. New Journal of Chemistry,2017,41(3):1259-1266. doi: 10.1039/C6NJ03052A
    [34] XU W, WANG G S, YIN P G. Designed fabrication of reduced graphene oxides/Ni hybrids for effective electromagnetic absorption and shielding[J]. Carbon,2018,139:759-767. doi: 10.1016/j.carbon.2018.07.044
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1199
  • HTML全文浏览量:  436
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-18
  • 修回日期:  2021-05-03
  • 录用日期:  2021-05-14
  • 网络出版日期:  2021-06-16
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回