留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CuS-Bi2WO6/活性纳米碳纤维的制备及其光催化性能

申久英 刘碧雯 赵宇翔 彭蕾 刘心中 席北斗

申久英, 刘碧雯, 赵宇翔, 等. CuS-Bi2WO6/活性纳米碳纤维的制备及其光催化性能[J]. 复合材料学报, 2022, 39(3): 1163-1172. doi: 10.13801/j.cnki.fhclxb.20210616.001
引用本文: 申久英, 刘碧雯, 赵宇翔, 等. CuS-Bi2WO6/活性纳米碳纤维的制备及其光催化性能[J]. 复合材料学报, 2022, 39(3): 1163-1172. doi: 10.13801/j.cnki.fhclxb.20210616.001
SHEN Jiuying, LIU Biwen, ZHAO Yuxiang, et al. Preparation and photocatalytic properties CuS-Bi2WO6/carbon nanofibers composites[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1163-1172. doi: 10.13801/j.cnki.fhclxb.20210616.001
Citation: SHEN Jiuying, LIU Biwen, ZHAO Yuxiang, et al. Preparation and photocatalytic properties CuS-Bi2WO6/carbon nanofibers composites[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1163-1172. doi: 10.13801/j.cnki.fhclxb.20210616.001

CuS-Bi2WO6/活性纳米碳纤维的制备及其光催化性能

doi: 10.13801/j.cnki.fhclxb.20210616.001
基金项目: 国家重点研发计划(2019YFC1904103);福建工程学院科研启动基金(GY-Z20014)
详细信息
    通讯作者:

    刘心中,学士,教授,博士生导师,研究方向为固体废弃物污染控制及其综合利用  E-mail:liuxinzh01@163.com

    席北斗,博士,研究员,博士生导师,研究方向为土壤及地下水污染防控与修复  E-mail:xibeidou@263.net

  • 中图分类号: X505;O643.36;O644.1

Preparation and photocatalytic properties CuS-Bi2WO6/carbon nanofibers composites

  • 摘要: 铬是一种常见的重金属污染物,广泛用于各种工业过程。采用溶剂热法制备了不同CNFs(活性纳米碳纤维)含量的CuS-Bi2WO6/CNFs复合光催化剂,改善可见光照射下六价铬的还原。通过XRD、SEM、TEM、FTIR、XPS、UV-Vis、PL和光电流等技术对样品的晶型、形貌、结构、元素组成、表面官能团、光学性质等进行了测试与表征,并考察了CuS-Bi2WO6/CNFs光催化还原Cr(VI)的活性。结果表明,CuS-Bi2WO6/CNFs复合材料的光催化活性明显高于CuS、Bi2WO6和CuS-Bi2WO6。在可见光照射下,1%CuS-Bi2WO6/CNFs对Cr(VI)还原表现出优异的光催化活性,在3 h内还原率为98%。1%CuS-Bi2WO6/CNFs复合材料在4次循环后也表现出良好的稳定性和可回收性。此外,活性基团捕获实验表明,羟基自由基(•OH)、光生空穴(h+)和超氧自由基(•O2)参与了CuS-Bi2WO6/CNFs对Cr(VI)的还原,而•O2是该体系的主要活性组分,并在此基础上初步探讨了光催化反应机制。本文的研究结果表明,通过简单可控的溶剂热法,可以实现CuS-Bi2WO6/CNFs的制备,并且证实了CuS-Bi2WO6/CNFs复合材料在六价铬处理方面的良好前景。

     

  • 图  1  不同活性纳米碳纤维(CNFs)含量的CuS-Bi2WO6/CNFs光催化材料的XRD图谱

    Figure  1.  XRD patterns of CuS-Bi2WO6/carbon nanofibers (CNFs) photocatalysts with different CNFs content

    图  2  不同CNFs含量的CuS-Bi2WO6/CNFs光催化材料的FTIR图谱

    Figure  2.  FTIR spectra of CuS-Bi2WO6/CNFs photocatalysts with different CNFs content

    图  3  Bi2WO6 (a)、5%CuS-Bi2WO6 (b)、1%CuS-Bi2WO6/CNFs (c) 光催化剂的SEM图像,5%CuS-Bi2WO6 (d)、1%CuS-Bi2WO6/CNFs(20 nm) (e)和1%CuS-Bi2WO6/CNFs(10 nm) (f) 的TEM图像

    Figure  3.  SEM images of Bi2WO6 (a), 5%CuS-Bi2WO6 (b), 1%CuS-Bi2WO6/CNFs (c) and TEM images of 5%CuS-Bi2WO6 (d), 1%CuS-Bi2WO6/CNFs (20 nm) (e) and 1%CuS-Bi2WO6/CNFs (10 nm) (f)

    图  4  1%CuS-Bi2WO6/CNFs的XPS图谱:(a)全谱;(b) Bi4f;(c) W4f;(d) Cu2p;(e) C1s;(f) S2p

    Figure  4.  XPS spectra of 1%CuS-Bi2WO6/CNFs: (a) Full spectrum; (b) Bi4f; (c) W4f; (d) Cu2p; (e) C1s; (f) S2p

    图  5  不同CNFs含量的CuS-Bi2WO6/CNFs光催化材料的紫外-可见光吸收光谱

    Figure  5.  UV-Vis spectra of CuS-Bi2WO6/CNFs photocatalysts with different CNFs content

    图  6  Bi2WO6和CuS-Bi2WO6/CNFs的带隙能谱图

    Figure  6.  Band gap spectrum of Bi2WO6 and CuS-Bi2WO6/CNFs

    Eg—Semiconductor band gap width; α—Absorptivity

    图  7  Bi2WO6、CuS-Bi2WO6和1%CuS-Bi2WO6/CNFs光催化剂的荧光光谱图

    Figure  7.  PL spectra of photocatalysts Bi2WO6, CuS-Bi2WO6 and 1%CuS-Bi2WO6/CNFs

    图  8  Bi2WO6和1%CuS-Bi2WO6/CNFs光催化剂的态光电流响应图

    Figure  8.  Transient photocurrent responses spectra of photocatalysts Bi2WO6 and 1%CuS-Bi2WO6/CNFs

    图  9  不同CNFs含量的CuS-Bi2WO6/CNFs光催化材料的吸附曲线

    Figure  9.  Material adsorption curve of CuS-Bi2WO6/CNFs photocatalysts with different CNFs contents

    图  10  不同CNFs含量的CuS-Bi2WO6/CNFs光催化材料的Cr(VI)还原曲线

    Figure  10.  Cr (VI) reduction original curve line of CuS-Bi2WO6/CNFs photocatalysts with different CNFs contents

    图  11  不同CNFs含量的CuS-Bi2WO6/CNFs光催化材料一级反应动力学曲线

    Figure  11.  First order reaction kinetic curve of CuS-Bi2WO6/CNFs photocatalysts with different CNFs contents

    C0—Initial concentration of solution; Ct—Concentration of solution at time t

    图  12  1%CuS-Bi2WO6/CNFs降解Cr(VI)稳定性测试

    Figure  12.  Cyclic photocatalytic of 1%CuS-Bi2WO6/CNFs reduction of Cr(VI) curve

    图  13  1%CuS-Bi2WO6/CNFs反应前后XRD图谱

    Figure  13.  XRD patterns before and after reaction of 1%CuS-Bi2WO6/CNFs

    图  14  CuS-Bi2WO6/CNFs对Cr(VI)的光催化还原活性物质捕捉实验

    Figure  14.  Active substance capture experiment with CuS-Bi2WO6/CNFs to reduction of Cr(VI)

    IPA—Isopropanol; BQ—Benzoquinone; EDTA—Ethylene diamine tetraacetic acid

    图  15  1% CuS-Bi2WO6/CNFs的DMPO–·O2自旋捕获光谱

    Figure  15.  DMPO–·O2 spin-trapping spectra of 1% CuS-Bi2WO6/CNFs

    图  16  CuS-Bi2WO6/CNFs光催化还原Cr(VI)机制图

    Figure  16.  CuS-Bi2WO6/CNFs photocatalytic reduction of Cr(VI) mechanism diagram

    CB—Conduction band; VB—Valence band

    表  1  CuS-Bi2WO6/CNFs复合材料的命名

    Table  1.   Naming of CuS-Bi2WO6/CNFs composite

    Specimen Mass ratio of CNFs∶
    CuS-Bi2WO6/%
    0.5%CuS-Bi2WO6/CNFs 0.5
    1%CuS-Bi2WO6/CNFs 1
    2%CuS-Bi2WO6/CNFs 2
    4%CuS-Bi2WO6/CNFs 4
    6%CuS-Bi2WO6/CNFs 6
    下载: 导出CSV
  • [1] XIONG J, DU J, ZENG S, et al. CuS nanosheet decorated Bi5O7I composite for the en-hanced photocatalytic reduction activity of aqueous Cr(VI)[J]. Journal of Inorganic Materials,2020,36(3):356.
    [2] SUNG Y H, BIRO R P, PRIOR Y, et al. Synthesis of SnS2/SnS fullerene-like nanoparticles: Superlattice with polyhedral shape[J]. American Chemical Society,2003,125(34):10470-10474. doi: 10.1021/ja036057d
    [3] CHIA H, WANG S L, YU M T. Photocatalytic reduction of Cr(VI) in the presence of NO3− and CI electrolytes as influenced by Fe(III)[J]. Environmental Science & Technology,2007,22(41):7907-7914.
    [4] HE Z, CAI Q, WU M, et al. Photocatalytic reduction of Cr(VI) in an aqueous suspension of surface-fluorinated anatase TiO2 nanosheets with exposed facets[J]. Industrial & Engineering Chemistry Research,2013,52(28):9556-9565.
    [5] YI H, ZENG G, LAI C, et al. Environment-friendly fullerene separation methods[J]. Chemical Engineering Journal,2017,330:134-145. doi: 10.1016/j.cej.2017.07.143
    [6] 刘自力, 韦江慧. 光催化降解糖蜜酒精废水的研究[J]. 工业催化, 2004, 12(2):31-34. doi: 10.3969/j.issn.1008-1143.2004.02.008

    LIU Zili, WEI Jianghui. Photocatalytic degradation of wastewater from fermented molasses[J]. Industrial Catalysis,2004,12(2):31-34(in Chinese). doi: 10.3969/j.issn.1008-1143.2004.02.008
    [7] 刘旺平, 王鑫, 张帅, 等. Ag和介孔碳改性Bi2WO6光催化剂的合成及其可见光下的光催化性能[J]. 复合材料学报, 2015, 32(4):1187-1193.

    LIU Wangping, WANG Wenzhong, ZHANG Shuai, et al. Synthesis of Ag and mesoporous carbon modified Bi2WO6 photocatalyst and its photocatalytic property in visible light[J]. Acta Materiae Compositae Sinica,2015,32(4):1187-1193(in Chinese).
    [8] 张志洁, 王文中. 高活性可见光响应钨酸铋光催化剂的制备[C]. 第十三届全国太阳能光化学与光催化学术会议学术论文集. 北京, 2012.

    ZHANG Zhihao, WANG Wenzhong. Preparation of highly active visible light response bismuth tungstate photocatalyst[C]. Academic Proceedings of the 13th National Conference on Solar Photochemistry and Photocatalysis. Beijing, 2012(in Chinese).
    [9] TANG J, ZOU Z, YE J. Photophysical and photocatalytic properties of Bi2WO6[J]. Catalysis Letters,2004,95(53):250-270.
    [10] 李小芳. 新型钨酸铋可见光催化剂的制备改性及降解低浓度甲苯性能研究[D]. 杭州: 浙江大学, 2012.

    LI Xiaofang. Study on the preparation and modification of a new type of bismuth tungstate visible light catalyst and its performance in degradation of low-concentration toluene[D]. Hangzhou: Zhejiang University, 2012(in Chinese).
    [11] CAI Z, ZHOU Y, MA S, et al. Enhanced visible light photocatalytic performance of g-C3N4/CuS p-n heterojunctions for degradation of organic dyes[J]. Journal of Photochemistry and Photobiology A: Chemistry,2017,348:168-178. doi: 10.1016/j.jphotochem.2017.08.031
    [12] GAO L, DU J, MA T. Cysteine-assisted synthesis of CuS-TiO2 composites with enhanced photocatalytic activity[J]. Ceramics International,2017,43(12):9559-9563. doi: 10.1016/j.ceramint.2017.04.093
    [13] BHOI Y P, BEHREA C, MAJHI D, et al. Visible light-assisted photocatalytic mineralization of diuron pesticide using novel type II CuS/Bi2W2O9 heterojunctions with a hierarchical microspherical structure[J]. New Journal of Chemistry,2018,42(1):281-292. doi: 10.1039/C7NJ03390G
    [14] BHOI Y P, MISHRA B G. Photocatalytic degradation of alachlor using type-II CuS/BiFeO3 heterojunctions as novel photocatalyst under visible light irradiation[J]. Chemical Engineering Journal,2018,344:391-401. doi: 10.1016/j.cej.2018.03.094
    [15] KAMANIFAR M, ALLAHRESANI A, NAGHIZDEH A. Synthesis and characterizations of a novel CoFe2O4@CuS magnetic nanocomposite and investigation of its efficiency for photocatalytic degradation of penicillin gantibiotic in simulated wastewater[J]. Journal of Hazardous Materials,2019,366:545-555. doi: 10.1016/j.jhazmat.2018.12.046
    [16] GUO L, ZHANG K, HAN X, et al. 2D in-plane CuS/Bi2WO6 p-n heterostructures with promoted visible-light-driven photo-fenton degradation performance[J]. Nanomaterials (Basel),2019,9(8):1-18.
    [17] MAO W, ZHANG L, WANG T, et al. Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(VI) from wastewater[J]. Frontiers of Environmental Science & Engineering,2020,15(4):52-65.
    [18] WANG Y, SUNARSO J, WANG F, et al. Electrospinning and hydrothermal synthesis of recyclable MoS2/CNFs hybrid with enhanced visible-light photocatalytic performance[J]. Ceramics International,2017,43(14):11028-11033. doi: 10.1016/j.ceramint.2017.05.145
    [19] GU H, HUANG Y, ZUO L, et al. Graphene sheets wrapped carbon nanofibers as a highly conductive three-dimensional framework for perpendicularly anchoring of MoS2: Advanced electrocatalysts for hydrogen evolution reaction[J]. Electrochimica Acta,2016,219:604-613. doi: 10.1016/j.electacta.2016.10.015
    [20] ZHANG Y, SHAO C, LI X, et al. Controllable synthesis and enhanced visible photocatalytic degradation performances of Bi2WO6-carbon nanofibers heteroarchitectures[J]. Journal of Sol-Gel Science and Technology,2014,70(1):149-158. doi: 10.1007/s10971-014-3284-x
    [21] ZHOU H, WEN Z, LIU J, et al. Z-scheme plasmonic Ag decorated WO3/Bi2WO6 hybrids for enhanced photocatalytic abatement of chlorinated-VOCs under solar light irradiation[J]. Applied Catalysis B: Environmental,2019,242:76-84. doi: 10.1016/j.apcatb.2018.09.090
    [22] DOUGLAS B. MAWHINNEY V N, ANYA K, et al. Infrared spectral evidence for the etching of carbon nanotubes-ozone oxidation at 298 K[J]. American Chemical Society,2000,122:2383-2384. doi: 10.1021/ja994094s
    [23] TJMEN G, GEUS J W, DIEDERIK C K. Surface structure of untreated parallel and fishbone carbon nanofibres-An infrared study[J]. ChemPhysChem,2002,2:209-214.
    [24] QIN Y H, YANG H H, ZHANG X S, et al. Electrophoretic deposition of network-like carbon nanofibers as a palladium catalyst support for ethanol oxidation in alkaline media[J]. Carbon,2010,48(12):3323-3329. doi: 10.1016/j.carbon.2010.05.010
    [25] ALI A, BAHETI V, MILITKY J. Energy harvesting performance of silver electroplated fabrics[J]. Materials Chemistry and Physics,2019,231:33-40. doi: 10.1016/j.matchemphys.2019.02.063
    [26] YANG J, WANG X, CHEN Y, et al. Enhanced photocatalytic activities of visible-light driven green synthesis in water and environmental remediation on Au/Bi2WO6 hybrid nanostructures[J]. RSC Advances,2015,5(13):9771-9782. doi: 10.1039/C4RA15349A
    [27] DAS K, MAJHI D, BHOOI Y P, et al. Combustion synthesis, characterization and photocatalytic application of CuS/Bi4Ti3O12 p–n heterojunction materials towards efficient degradation of 2-methyl-4-chlorophenoxyacetic acid herbicide under visible light[J]. Chemical Engineering Journal,2019,362:588-599. doi: 10.1016/j.cej.2019.01.060
    [28] CHEN P, CHEN L, ZENG Y, et al. Three-dimension hierarchical heterostructure of CdWO4 microrods decorated with Bi2WO6 nanoplates for high-selectivity photocatalytic benzene hydroxylation to phenol[J]. Applied Catalysis B: Environmental,2018,234:311-317. doi: 10.1016/j.apcatb.2018.04.028
    [29] CHEN S, LI X, ZHOU W, et al. Carbon-coated Cu-TiO2 nanocomposite with enhanced photostability and photocatalytic activity[J]. Applied Surface Science,2019,466:254-261. doi: 10.1016/j.apsusc.2018.10.036
    [30] MAO W, WANG T, WANG H, et al. Novel Bi2WO6 loaded g-C3N4 composites with enhanced photocatalytic degradation of dye and pharmaceutical wastewater under visible light irradiation[J]. Journal of Materials Science: Materials in Electronics,2018,29(17):15174-15182. doi: 10.1007/s10854-018-9659-y
    [31] 罗伟, 冯小青, 黄影, 等. 微波水热合成花球状BiOCl光催化降解甲硝唑[J]. 中国环境科学, 2020, 40(4):1545-1554. doi: 10.3969/j.issn.1000-6923.2020.04.020

    LUO Wei, FENG Xiaoqing, HUANG Ying, et al. Photocatalytic degradation of metronidazole using flower-like BiOCl prepared by microwave hydrothermal method[J]. China Environmental Science,2020,40(4):1545-1554(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.04.020
    [32] WANG Y J, BAO S Y, LIU Y Q, et al. Efficient photocatalytic reduction of Cr(VI) in aqueous solution over CoS2/g-C3N4–rGO nanocomposites under visible light[J]. Applied Surface Science,2020,510:145495-145505. doi: 10.1016/j.apsusc.2020.145495
    [33] WANG X L, PEHKONEN S O, RAY A K. Removal of Aqueous Cr(VI) by a combination of photocatalytic reduction and coprecipitation[J]. Industrial and Engineering Chemistry Research,2004,43(7):1665-1672. doi: 10.1021/ie030580j
    [34] CHEN F, YANG Q, WANG Y L, et al. Efficient construction of bismuth vanadate-based Z-scheme photocatalyst for simultaneous Cr(VI) reduction and ciprofloxacin oxidation under visible light: Kinetics, degradation pathways and mechanism[J]. Chemical Engineering Journal,2018,348:157-170. doi: 10.1016/j.cej.2018.04.170
    [35] YANG J J, CHEN D M, ZHANG Y M, et al. 3D–3D porous Bi2WO6/graphene hydrogel composite with excellent synergistic effect of adsorption-enrichment and photocatalytic degradation[J]. Applied Catalysis B: Environmental,2017,205:228-237. doi: 10.1016/j.apcatb.2016.12.035
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  1383
  • HTML全文浏览量:  788
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-19
  • 修回日期:  2021-05-30
  • 录用日期:  2021-06-08
  • 网络出版日期:  2021-06-16
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回