留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化石墨烯/多壁碳纳米管影响天然橡胶性能的实验研究

高浩 时文欣 宋维浩 李利

高浩, 时文欣, 宋维浩, 等. 氧化石墨烯/多壁碳纳米管影响天然橡胶性能的实验研究[J]. 复合材料学报, 2022, 39(5): 2172-2182. doi: 10.13801/j.cnki.fhclxb.20210615.001
引用本文: 高浩, 时文欣, 宋维浩, 等. 氧化石墨烯/多壁碳纳米管影响天然橡胶性能的实验研究[J]. 复合材料学报, 2022, 39(5): 2172-2182. doi: 10.13801/j.cnki.fhclxb.20210615.001
GAO Hao, SHI Wenxin, SONG Weihao, et al. Effect of graphene oxide/multi-walled carbon nanotubes on the properties of natural rubber and experimental research[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2172-2182. doi: 10.13801/j.cnki.fhclxb.20210615.001
Citation: GAO Hao, SHI Wenxin, SONG Weihao, et al. Effect of graphene oxide/multi-walled carbon nanotubes on the properties of natural rubber and experimental research[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2172-2182. doi: 10.13801/j.cnki.fhclxb.20210615.001

氧化石墨烯/多壁碳纳米管影响天然橡胶性能的实验研究

doi: 10.13801/j.cnki.fhclxb.20210615.001
基金项目: 国家自然科学基金 (51345006)
详细信息
    通讯作者:

    李利,博士,教授,博士生导师,研究方向为高分子材料加工机械  E-mail:lindabob@126.com

  • 中图分类号: TB332

Effect of graphene oxide/multi-walled carbon nanotubes on the properties of natural rubber and experimental research

  • 摘要: 氧化石墨烯(GO)和多壁碳纳米管(MWCNTs)因其良好的力学性能和导热性能,被广泛应用于橡胶填料。为了提高硫化效率,改善天然橡胶的物理性能,本论文将不同配比的GO和MWCNTs与橡胶混炼制备了一种GO/MWCNTs橡胶复合材料。通过测试混炼胶以及硫化胶的各项物理性能得出结论,GO填料与MWCNTs填料二者存在协同作用,并且不同配比的GO与MWCNTs对胶料性能的影响也不同,当MWCNTs填料定量加入6wt%时,随着GO含量的增加:硫化胶的最大转矩MH与交联密度ΔM值呈增大趋势;焦烧时间tc10和正硫化时间tc90先降低,在3wt%后tc90略有回升,且当GO与MWCNTs含量分别为3wt%和6wt%时,对硫化效率的提升最为明显;当二者同时加入6wt%时,混炼胶与硫化胶的导热率分别提高了25.1%和23.3%;硫化胶的100%定伸应力、300%定伸应力出现升高趋势,在3wt%之后略微下降。综合来看,当GO与MWCNTs添加量分别为3wt%与6wt%时,填料粒子对橡胶的补强效果最佳,其良好的导热性能增强了硫化反应的均匀性,实现了硫化过程的节能减耗。

     

  • 图  1  氧化石墨烯/多壁碳纳米管 (GO/MWCNTs) 填料网络示意图

    Figure  1.  Schematic diagram of graphene oxide/multi-walled carbon nanotubes (GO/MWCNTs) packing network

    图  2  GO含量对GO/MWCNTs橡胶复合材料最大扭矩MH (a)、交联密度ΔM (b)、焦烧时间tc10 (c) 以及正硫化时间tc90 (d) 的影响

    Figure  2.  Influence of GO content of GO/MWCNTs rubber composite on the maximum torque MH (a), crosslink density ΔM (b), scorching time tc10 (c) and positive vulcanization time tc90 (d)

    图  3  不同温度下GO/MWCNTs配比对GO/MWCNTs橡胶复合材料导热率的影响

    Figure  3.  Influence of GO/MWCNTs ratio on the thermal conductivity of GO/MWCNTs rubber composite at different temperature

    图  4  GO/MWCNTs的协同作用示意图

    Figure  4.  Diagram of synergy for GO/MWCNTs

    图  5  温度对GO/MWCNTs橡胶复合材料导热率的影响

    Figure  5.  Influence of temperature on the thermal conductivity of GO/MWCNTs rubber composite

    图  6  GO/MWCNTs配比对GO/MWCNTs橡胶复合材料100%定伸应力 (a)、300%定伸应力 (b)、拉伸强度 (c)、拉断伸长率 (d)、撕裂强度 (e) 和硬度 (f) 的影响

    Figure  6.  Influence of GO/MWCNTs ratio on 100% constant elongation stress (a), 300% tensile stress (b), tensile strength (c), tesile elongation (d), tearing strength (e) and hardness (f) of GO/MWCNTs rubber composite

    表  1  GO/MWCNTs的不同配比

    Table  1.   Different ratios of GO/MWCNTs

    Number0#1#2#3#4#5#6#7#
    MWCNTs/wt%0666666 6
    GO/wt%0012345 6
    下载: 导出CSV

    表  2  GO/MWCNTs橡胶复合材料混炼胶的门尼黏度

    Table  2.   Mooney viscosity for compounding of GO/MWCNTs rubber composites

    MWCNTs
    /wt%
    GO
    /wt%
    Mooney viscosity/
    ML100℃1+4
    6 0 46.52
    1 45.23
    2 43.47
    3 42.49
    4 41.55
    5 40.98
    6 38.38
    Notes: M—Mooney; L—Large rotor; 1—Preheating for 1 min; 4—Trial for 4 min.
    下载: 导出CSV
  • [1] SHAHEDUR Rahman Mir. 高性能抗氧化剂的抗衰老机理及应用性能评价研究[D]. 北京: 北京化工大学, 2020.

    SHAHEDUR Rahman Mir. Study on anti-agin mechanism and application performace evaluation of high-perfor-mance antioxidants[D]. Beijing: Beijing University of Chemical Technology, 2020(in Chinese).
    [2] 郭飞, 张兆想, 宋炜, 等. 橡胶硫化过程数值模拟研究进展[J]. 化工学报, 2020, 71(8):3393-3402.

    GUO Fei, ZHANG Zhaoxiang, SONG Wei, et al. Research progress in numerical simulation of rubber vulcanization process[J]. CIESC Journal,2020,71(8):3393-3402(in Chinese).
    [3] 樊建军. 巨型工程轮胎抗硫化返原研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    FAN Jianjun. Research on the anti-reversion of giant engi-neering tires[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [4] 粟本龙. 巨型子午线轮胎硫化仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    SU Benlong. Research on the vulcanization simulation of giant radial tires[D]. Harbin: Harbin Institute of Technology, 2010(in Chinese).
    [5] WAQAS Ahmed Raza. 石墨烯和多壁碳纳米管加固高温硫化硅橡胶的研究[D]. 山东: 山东大学, 2018.

    WAQAS Ahmed Raza. Research on reinforcement of high temperature vulcanized silicone rubber by graphene and multi-walled carbon nanotubes[D]. Shandong: Shandong University, 2018(in Chinese).
    [6] IMTIAZ S, SIDDIQ M, KAUSAR A, et al. A review featuring fabrication, properties and applications of carbon nanotubes (CNTs) reinforced polymer and epoxy nanocomposites[J]. Chinese Journal of Polymer Science,2018,36(4):445-461. doi: 10.1007/s10118-018-2045-7
    [7] LI X, TAO Y, LI F, et al. Efficient preparation and characterization of functional graphene with versatile applicability[J]. Journal of Harbin Institute of Technology,2016,23(3):1-29.
    [8] FU S, SUN Z, HUANG P, et al. Some basic aspects of polymer nanocomposites: A critical review[J]. Nano Materials Science,2019,1(1):2-30. doi: 10.1016/j.nanoms.2019.02.006
    [9] KUESENG K, JACOB K I. Natural rubber nanocomposites with SiC nanoparticles and carbon nanotubes[J]. European Polymer Journal,2005,42(1):220-227.
    [10] FALCO A D, GOYANES S, RUBIOLO G H, et al. Carbon nanotubes as reinforcement of styrene-butadiene rubber[J]. Applied Surface Science,2007,254(1):262-265.
    [11] DAS A, STÖCKELHUBER K W, JURK R, et al. Modified and unmodified multiwalled carbon nanotubes in high perfor-mance solution styrene-butadiene and butadiene rubber blends[J]. Polymer,2008,49(24):5276-5283.
    [12] SADASIVUNI K K, PONNAMMA D, THOMAS S, et al. Evolution from graphite to graphene elastomer composites[J]. Progress in Polymer Science,2014,39(4):749-780.
    [13] 谢苗. 氧化石墨烯/碳纳米管/丁基胶乳复合材料的湿法制备机理及实验研究[D]. 青岛: 青岛科技大学, 2020.

    XIE Miao. The wet preparation mechanism and experimental study of graphene oxide/carbon nanotube/butyl latex composites[D]. Qingdao: Qingdao University of Science and Technology, 2020(in Chinese).
    [14] ALLAHBAKHSH A, MAZINANI S, KALAEE M R, et al. Cure kinetics and chemorheology of EPDM/graphene oxide nanocomposites[J]. Thermochimica Acta,2013,563:22-32.
    [15] YANG B, ZHANG S H, ZOU Y F, et al. Improving the thermal conductivity and mechanical properties of two component room temperature vulcanized silicone rubber by filling with hydrophobically modified SiO2-graphene nanohybrids[J]. Chinese Journal of Polymer Science,2019,37(2):189-196. doi: 10.1007/s10118-019-2185-4
    [16] RAM R, RAHAMAN M, KHASTGIR D. Electrical properties of polyvinylidene fluoride (PVDF)/multi-walled carbon nanotube (MWCNT) semi-transparent composites: Modelling of DC conductivity[J]. Composites Part A: Applied Science and Manufacturing, 2015, 69: 30-39.
    [17] WANG X Y, YAO X, MÜLLEN K. Polycyclic aromatic hydrocarbons in the graphene era[J]. Science China(Chemistry),2019,62(9):1099-1144.
    [18] 许宗超. 高强度、抗疲劳石墨烯/橡胶纳米复合材料的设计与制备[D]. 北京: 北京化工大学, 2020.

    XU Zongchao. Design and preparation of high-strength, fatigue-resistant graphene/rubber nanocomposites[D]. Beijing: Beijing University of Chemical Technology, 2020(in Chinese).
    [19] 中国国家标准化管理委员会. 橡胶用无转子硫化仪测定硫化特性: GB/T 16584—1996[S]. 北京: 中国标准出版社, 1996.

    Standardization Administration of the People's Republic of China. Determination of vulcanization characteristics of rubber without rotor vulcanizer: GB/T 16584—1996[S]. Beijing: China Standards Press, 1996(in Chinese).
    [20] 何燕, 马连湘. 用激光导热仪测定炭黑填充橡胶的导热系数[J]. 合成橡胶工业, 2008(4):255-258. doi: 10.3969/j.issn.1000-1255.2008.04.003

    HE Yan, MA Lianxiang. Measuring the thermal conducti-vity of carbon black filled rubber with a laser thermal conductivity meter[J]. Synthetic Rubber Industry,2008(4):255-258(in Chinese). doi: 10.3969/j.issn.1000-1255.2008.04.003
    [21] 中国国家标准化管理委员会. 未硫化橡胶 用圆盘剪切黏度计进行测定 第1部分—门尼黏度的测定: GB/T 1232.1—2016[S]. 北京: 中国标准出版社, 2016.

    Standardization Administration of the People's Republic of China. Determination of unsulfurized rubber with disc shear viscometer Part 1—Determination of Mooney visco-sity: GB/T 1232.1—2016[S]. Beijing: China Standards Press, 2016(in Chinese).
    [22] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Determination of tensile stress strain properties of vulcanized rubber or thermoplastic rubber: GB/T 528—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [23] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶压入硬度试验方法 第1部分—邵氏硬度计法(邵氏硬度): GB/T 531.1—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Test method for pressing hardness of vulcanized rubber or thermoplastic rubber Part 1—Shore hardness tester (Shore hardness): GB/T 531.1—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [24] BHATTACHARYA M, BHOWMICK A K. Synergy in carbon black-filled natural rubber nanocomposites:Part I— Mechanical, dynamic mechanical properties, and morphology[J]. Journal of Materials Science,2010,45(22):6126-6138.
    [25] 李京超. 三维导热网络的构筑及其橡胶复合材料研究[D]. 北京: 北京化工大学, 2020.

    LI Jingchao. Construction of three-dimensional thermal network and its rubber composite materials[D]. Beijing: Beijing University of Chemical Technology, 2020(in Chinese).
    [26] 张小璇. 导热硅橡胶的制备与性能研究[D]. 济南: 山东大学, 2020.

    ZHANG Xiaoxuan. Preparation and properties of thermally conductive silicone rubber[D]. Jinan: Shandong University, 2020(in Chinese).
    [27] 宋仕强. 石墨烯衍生物及其丙烯酸酯类共聚物和丁苯橡胶复合材料的结构和性能研究[D]. 上海: 上海交通大学, 2018.

    SONG Shiqiang. Research on the structure and properties of graphene derivatives and their acrylate copolymers and styrene butadiene rubber composites[D]. Shanghai: Shanghai Jiaotong University, 2018(in Chinese).
    [28] DANG Z M, ZHENG M S, ZHA J W. 1D/2D Carbon nanomaterial-polymer dielectric composites with high permittivity for power energy storage applications[J]. Small,2016,12(13):1688-1701.
    [29] SUN L. Structure and synthesis of graphene oxide[J]. Chinese Journal of Chemical Engineering,2019,27(10):2251-2260. doi: 10.1016/j.cjche.2019.05.003
    [30] ZHENG C, ZHU J, YANG C, et al. The art of two-dimensional soft nanomaterials[J]. Science China(Chemistry),2019,62(9):1145-1193.
    [31] SARMAD Ali. 聚乙烯改性吹塑薄膜的结构演变和表面性质研究[D]. 安徽: 中国科学技术大学, 2018.

    SARMAD Ali. Study of the structure evolution and surface properties of the polyethylene modified blown films[D]. Anhui: University of Science and Technology of China, 2018(in Chinese).
    [32] CHEN H Y, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science, 2016, 59: 41-85.
    [33] 唐淼. 聚合物弹性体材料网络结构对流变学行为和力学性能影响的研究[D]. 合肥: 中国科学技术大学, 2017.

    TANG Miao. Research on the effect of polymer elastomer material network structure on rheological behavior and mechanical properties[D]. Hefei: University of Science and Technology of China, 2017(in Chinese).
    [34] 张松波, 周竞发, 刘月星, 等. 氧化石墨烯对炭黑/天然橡胶复合材料耐疲劳性能的影响[J]. 橡胶工业, 2018, 65(11):1205-1209.

    ZHANG Songbo, ZHOU Jingfa, LIU Yuexing, et al. Effect of graphene oxide on fatigue resistance of carbon black/natural rubber composites[J]. Rubber Industry,2018,65(11):1205-1209(in Chinese).
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1155
  • HTML全文浏览量:  472
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-06
  • 修回日期:  2021-05-26
  • 录用日期:  2021-06-03
  • 网络出版日期:  2021-06-15
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回