留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅橡胶表面原位生长ZnO纳米花构筑稳固超疏水表面

胡云浩 石晓凯 马小凡 毕红华 李明慧 孙举涛

胡云浩, 石晓凯, 马小凡, 等. 硅橡胶表面原位生长ZnO纳米花构筑稳固超疏水表面[J]. 复合材料学报, 2022, 39(4): 1638-1647. doi: 10.13801/j.cnki.fhclxb.20210611.001
引用本文: 胡云浩, 石晓凯, 马小凡, 等. 硅橡胶表面原位生长ZnO纳米花构筑稳固超疏水表面[J]. 复合材料学报, 2022, 39(4): 1638-1647. doi: 10.13801/j.cnki.fhclxb.20210611.001
HU Yunhao, SHI Xiaokai, MA Xiaofan, et al. Mechanically stable superhydrophobic surface fabricated by self-growth of ZnO nanoflowers on vulcanized silicone rubber[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1638-1647. doi: 10.13801/j.cnki.fhclxb.20210611.001
Citation: HU Yunhao, SHI Xiaokai, MA Xiaofan, et al. Mechanically stable superhydrophobic surface fabricated by self-growth of ZnO nanoflowers on vulcanized silicone rubber[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1638-1647. doi: 10.13801/j.cnki.fhclxb.20210611.001

硅橡胶表面原位生长ZnO纳米花构筑稳固超疏水表面

doi: 10.13801/j.cnki.fhclxb.20210611.001
基金项目: 山东省重点研发项目(2018GSF117019)
详细信息
    通讯作者:

    孙举涛,博士,教授,博士生导师,研究方向为超疏水材料 E-mail:jtsun@qust.edu.cn

  • 中图分类号: TQ174

Mechanically stable superhydrophobic surface fabricated by self-growth of ZnO nanoflowers on vulcanized silicone rubber

  • 摘要: 制造的复杂性和对机械接触的敏感性严重阻碍了超疏水材料在实际应用的发展。为在柔性基质(硫化的硅橡胶)表面制备机械耐久的柔性超疏水表面,利用硫化硅橡胶溶胀过程可逆的特性,改进溶胶-凝胶法,将硅橡胶片预先用正丁胺水溶液溶胀,然后浸入硝酸锌/乙醇溶液中。利用正丁胺水溶液和硝酸锌/乙醇溶液在硅橡胶表面的交互扩散、反应,使ZnO纳米花在橡胶表面原位生长。超疏水的粗糙结构的构筑来自于硝酸锌与正丁胺的协同作用,其静态接触角(CA)可达(158±1.5)°,滑动角(RA)可达(4.5±0.5)°。SEM图像显示,100~200 nm的ZnO纳米片生长在硅橡胶表面,ZnO纳米片“嵌入”到橡胶表面,而不是沉积在橡胶表面,因此提升了其机械耐久性。而通过向橡胶中添加硅烷偶联剂γ-氨丙基三乙氧基硅烷(KH550),可进一步提升ZnO纳米片与橡胶基体界面相互作用,即使承受300次线性磨损,仍能保持超疏水特性,表现出优异机械稳定性。而且经过500次循环弯曲变形,其疏水性也几乎没有变化,解决了超疏水涂层在基体弯曲变形时的脱落问题。这种超疏水橡胶制备技术简单且适合工业生产,具有极高的实用前景。

     

  • 图  1  超疏水硅橡胶(SR)的制备工艺

    Figure  1.  Fabrication processes of superhydrophobic surface silicone rubber (SR)

    SA—Stearic acid

    图  2  在不同的溶胶-凝胶反应时间和温度下的SR片的接触角(CA):(a) 反应温度为60℃;(b) 反应时间为4 h

    Figure  2.  SR sheets contact angles (CA) at different sol-gel reaction time and temperature: (a) Reaction temperature of 60℃; (b) Reaction time of 4 h

    图  3  不同溶胶-凝胶温度时超疏水SR表面形貌的SEM图像

    Figure  3.  SEM images of superhydrophobic SR surface morphologies at different sol-gel temperatures

    图  4  不同放大倍率下最佳配比的超疏水SR的横截面SEM图像

    Figure  4.  SEM images of cross-sections of superhydrophobic SR with optimal ratio at different magnifications

    图  5  40℃下溶胶-凝胶反应的超疏水SR超声处理前后的SEM图像

    Figure  5.  SEM images of superhydrophobic SR of the sol-gel reaction at 40℃ before and after ultrasonic treatment

    图  6  最佳配比超疏水SR超声处理前后的SEM图像及接触角照片

    Figure  6.  SEM images and contact angle photos of superhydrophobic SR with the best ratio before and after ultrasonic treatment

    图  7  未处理和处理过的超疏水SR表面上的水滴((a)、(b))、将处理过的膜浸入去离子水中 (c) 和在弯曲过程中处理过的表面上的水滴((d)~(g))照片

    Figure  7.  Photographs of superhydrophobic SR of water droplet on untreated and treated surface ((a), (b)), treated film was immersed in deionized water (c) and water droplets on the surface treated during the bending process ((d)-(g))

    图  8  磨损测量示意图 (a)、不同磨损周期后的CA和滚动角(RA)值 (b) 和磨损后超疏水硅橡胶表面形态的SEM图像 ((c)、(d))

    Figure  8.  Schematic diagram of abrasion measurement (a), CA and roll-off angle (RA) values after different abrasion cycles (b) andSEM images of the superhydrophobic rubber surface morphology after abrasion ((c), (d))

    图  9  Si-69填充基体和KH550填充基体在不同的磨损循环后的超疏水SR的CA和RA值 ((a)、(b))、Si-69填充基体的300次磨损循环后的超疏水SR的表面形态的SEM图像 ((c)、(e)) 和KH550填充基体在700次磨损循环后超疏水SR的表面形态的SEM图像 ((d)、(f))

    Figure  9.  CA and RA values of superhydrophobic SR of Si-69 filled matrix and KH550 filled matrix after different wear cycles ((a), (b)), SEM images of the superhydrophobic SR surface morphology of the Si-69 filled matrix after 300 cycles of abrasion ((c), (e)) and SEM images of the superhydrophobic SR surface morphology of the KH550 filled matrix after 700 cycles of abrasion ((d), (f))

    图  10  磨损之前 (a) 和700个磨损周期后的 (b) 超疏水SR的EDS图谱

    Figure  10.  EDS spectra of superhydrophobic SR before abrasion (a) and after 700 cycles of abrasion (b)

    图  11  磨损前超疏水试样的FTIR图谱

    Figure  11.  FTIR spectra of superhydrophobic samples before abrasion

    图  12  超疏水SR折叠循环 ((a)、(b)) 和不同弯扭循环后超疏水膜的CA和RA (c)

    Figure  12.  Superhydrophobic SR folding cycle ((a), (b)) and CA and RA of superhydrophobic film after different bending-twisting cycles (c)

  • [1] WANG J, KAPLAN J A, COLSON Y L, et al. Stretch-induced drug delivery from superhydrophobic polymer composites: Use of crack propagati on failure modes for controlling release rates[J]. Angewandte Chemie International Edition,2016,55:2796-2800. doi: 10.1002/anie.201511052
    [2] ZHOU J C, FRANK M A, YANG Y Y, et al. A novel local drug delivery system: superhydrophobic tita-nium oxide nano-tube arrays serve as the drug reservoir and ultrasonication functions as the drug release trigger[J]. Materials Science and Engineering: C,2018,82:277-283. doi: 10.1016/j.msec.2017.08.066
    [3] 胡立琼, 雷鸣, 邱亚群, 等. 仿生超疏水表面在建筑和生物医药领域的研究进展[J]. 广东化工, 2016, 43(17):100-102. doi: 10.3969/j.issn.1007-1865.2016.17.045

    HU L Q, LEI M, QIU Y Q, et al. Application of biomimetic super-hydrophobic surface in construction and biological medicine field—A review[J]. Guangdong Journal of Che-mical Engineering,2016,43(17):100-102(in Chinese). doi: 10.3969/j.issn.1007-1865.2016.17.045
    [4] MALEKIDELARESTAQI M, MANSOURI A, CHINI S F. Electrokinetic energy conversion in a finite length superhydrophobic microchannel[J]. Chemical Physics Letters,2018,703:72-79. doi: 10.1016/j.cplett.2018.05.007
    [5] XUE X P, WANG S Q, ZHAN G C, et al. Fabrication of Ni Co coating by electrochemical deposition with high super-hydrophobic properties for corrosion protection[J]. Surface and Coatings Technology,2019,363:352-361. doi: 10.1016/j.surfcoat.2019.02.056
    [6] MISHCHENKO L, HATTON B, BAHADUR V, et al. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets[J]. ACS Nano,2010,4:7699-7707. doi: 10.1021/nn102557p
    [7] 莫春燕, 郑燕升, 王发龙, 等. TiO2/氟化含氢硅油超疏水防腐涂层的制备及性能[J]. 中国表面工程, 2015, 28(2):132-137. doi: 10.11933/j.issn.1007-9289.2015.02.016

    MO C Y, ZHENG Y S, WANG F L, et al. Preparation and property of TiO2/PMHS superhydrophobic and anticorrosive coating[J]. New Chemical Materials,2015,28(2):132-137(in Chinese). doi: 10.11933/j.issn.1007-9289.2015.02.016
    [8] GALOPIN E, PIRET G, SZUNERITS S, et al. Selective adhesion of bacillus cereus spores on heterogeneously wetted silicon nanowires[J]. Langmuir,2010,26(5):3479-3484. doi: 10.1021/la9030377
    [9] 周明, 郑傲然, 杨加宏. 复制模塑法制备超疏水表面及其应用[J]. 物理化学学报, 2007(8):164-168.

    ZHOU M, ZHENG A R, YANG J H. Superhydrophobic surfaces fabricated by replica molding and its applications[J]. Acta Physico-Chimica Sinica,2007(8):164-168(in Chinese).
    [10] PENG C Y, CHEN Z Y, TIWARI M K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance[J]. Nature Material,2018,17(4):355-360. doi: 10.1038/s41563-018-0044-2
    [11] CHEN F F, YANG Z Y, ZHU Y J, et al. Low-cost and scaled-up production of fluorine-free, sub-strate-independent, large-area superhydrophobic coatings based on hydroxyapatite nanowire bundles[J]. Chemistry-A European Journal,2018,24:416-424. doi: 10.1002/chem.201703894
    [12] LEE W K, JUNG W B, RHEE D, et al. Monolithic polymer nanoridges with programmable wetting transitions[J]. Advanced Materials,2018,30(32):1706657.
    [13] ZHU C, GAO Y, HUANG Y, et al. Controlling states of water droplets on nanostructured surfaces by design[J]. Nanoscale,2017,9(46):18240-18245. doi: 10.1039/C7NR06896D
    [14] VAZIRINASAB E, JAFARI R, MOMEN G. Application of superhydrophobic coatings as a corrosion barrier: A review[J]. Surface and Coatings Technology,2019,375:100-111. doi: 10.1016/j.surfcoat.2019.07.005
    [15] 马宁, 程丹, 张景强, 等. 激光刻蚀法制备GH4169超疏水表面及性能研究[J]. 中国铸造装备与技术, 2020, 55(2):40-45. doi: 10.3969/j.issn.1006-9658.2020.02.010

    MA N, CHENG D, ZHANG J Q, et al. Preparation and properties of GH4169 super-hydrophobic surface by laser etching[J]. China Foundry Machinery & Technology,2020,55(2):40-45(in Chinese). doi: 10.3969/j.issn.1006-9658.2020.02.010
    [16] PENG P P, KE Q P, ZHOU G, et al. Fabrication of microcavity-array superhydrophobic surfaces using an improved template method[J]. Journal of Colloid and Interface Science,2013,395:326-328. doi: 10.1016/j.jcis.2012.12.036
    [17] 孙巍, 周雨辰, 陈忠仁. 基于水滴模板法的微纳复合超疏水结构制备的研究[J]. 高分子学报, 2012(12):108-113.

    SUN W, ZHOU Y C, CHEN Z R. Construction of superhydrophobic surface via secondary processing of honeycomb-patterned substrate[J]. Acta Polymerica Sinica,2012(12):108-113(in Chinese).
    [18] MAGHSOUDI K, MOMEN G, JAFARI R, et al. Direct replication of micro-nanostructures in the fabrication of superhydrophobic silicone rubber surfaces by compression molding[J]. Applied Surface Science,2018,458:619-628. doi: 10.1016/j.apsusc.2018.07.099
    [19] MUNIRASUA S, BANATA F, DURRANI A A, et al. Intrinsically superhydrophobic PVDF mem-brane by phase inversion for membrane distillation[J]. Desalination,2017,417:77-86. doi: 10.1016/j.desal.2017.05.019
    [20] WANG D H, SUN Q Q, HOKKANEN M J, et al. Design of robust superhydrophobic surfaces[J]. Nature,2020,582(7810):55-59. doi: 10.1038/s41586-020-2331-8
    [21] WU J, DONG J, WANG Y, et al. Thermal oxidation ageing effects on silicone rubber sealing performance[J]. Polymer Degradation and Stability,2017,135:43-53. doi: 10.1016/j.polymdegradstab.2016.11.017
    [22] DAVYDOVA M L, SOKOLOVA M D, HALDEEVA A R, et al. Modification of sealing rubber based on nitrile butadiene rubber by thermoexpanded graphite[J]. Journal of Friction & Wear,2015,36(1):23-28.
    [23] PENG C Y, CHEN Z Y, TIWARI M K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance[J]. Nature Materials,2020,582(7810):355-360.
    [24] PENG C Y, CHEN Z Y, TIWARI M K, et al. Analysis of wear abrasion resistance of superhydrophobic acrylonitrile butadiene styrene rubber (ABS) nanocomposites[J]. Chemical Engineering Journal,2015,281:730-738. doi: 10.1016/j.cej.2015.06.086
    [25] 弯艳玲, 廉中旭, 刘志刚, 等. 高速电火花线切割制备耐用型超疏水铜表面[J]. 材料科学与工程学报, 2014, 32(5):634-637, 642.

    WAN Y L, LIAN Z X, LIU Z G, et al. Fabrication of robust super-hydrophobic copper surface by HS-WEDM[J]. Journal of Materials Science & Engineering,2014,32(5):634-637, 642(in Chinese).
    [26] 武志富, 李素娟. 氢氧化锌和氧化锌的红外光谱特征[J]. 光谱实验室, 2012, 29(4):2172-2175.

    WU Z F, LI S J. Infrared spectra characteristics of zinc hydroxide and zinc oxide[J]. Chinese Journal of Spectroscopy Laboratory,2012,29(4):2172-2175(in Chinese).
  • 加载中
图(14)
计量
  • 文章访问数:  860
  • HTML全文浏览量:  699
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-08
  • 修回日期:  2021-05-17
  • 录用日期:  2021-05-31
  • 网络出版日期:  2021-06-15
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回