留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

木质素-纳米纤维素复合薄膜的制备及其紫外光屏蔽性能

张梦丽 陈港 魏渊 钱杨杨

张梦丽, 陈港, 魏渊, 等. 木质素-纳米纤维素复合薄膜的制备及其紫外光屏蔽性能[J]. 复合材料学报, 2022, 39(3): 1239-1248. doi: 10.13801/j.cnki.fhclxb.20210609.006
引用本文: 张梦丽, 陈港, 魏渊, 等. 木质素-纳米纤维素复合薄膜的制备及其紫外光屏蔽性能[J]. 复合材料学报, 2022, 39(3): 1239-1248. doi: 10.13801/j.cnki.fhclxb.20210609.006
ZHANG Mengli, CHEN Gang, WEI Yuan, et al. Preparation and UV-blocking performance of lignin-cellulose nanofiber composite film[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1239-1248. doi: 10.13801/j.cnki.fhclxb.20210609.006
Citation: ZHANG Mengli, CHEN Gang, WEI Yuan, et al. Preparation and UV-blocking performance of lignin-cellulose nanofiber composite film[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1239-1248. doi: 10.13801/j.cnki.fhclxb.20210609.006

木质素-纳米纤维素复合薄膜的制备及其紫外光屏蔽性能

doi: 10.13801/j.cnki.fhclxb.20210609.006
基金项目: 国家重点研发计划项目 (2018YFC1902102);华南理工大学制浆造纸工程国家重点实验室自主创新研究基金资助项目(2020ZD02);工业和信息化部重点行业绿色制造系统集成项目 (Z135060009002)
详细信息
    通讯作者:

    陈港,博士,教授,研究方向为造纸技术与特种纸 E-mail:papercg@scut.edu.cn

  • 中图分类号: TB383.2

Preparation and UV-blocking performance of lignin-cellulose nanofiber composite film

  • 摘要: 由于臭氧层的破坏及塑料污染,研发具有紫外光屏蔽性能的纤维素基薄膜材料引起广泛重视。为实现紫外光屏蔽剂-木质素与纤维素均匀分散,提出了一种利用高压均质法来实现木质素颗粒及羧甲基化纤维均匀混合的方法,随后结合真空抽滤、热压干燥等工艺制得复合薄膜材料。实验中,对木质素-纳米纤维素(Lignin-CNF,L-CNF)复合膜的微观形貌及成形过程进行了深入分析,同时也研究了不同木质素添加量对复合膜透光率、紫外光屏蔽性能及表面色度值(L*a*b*值)的影响规律。结果表明,随木质素添加量的增大,复合膜在600 nm处的透光率有所降低,而在紫外光两个主要波段(UVA:320~400 nm,UVB:280~320 nm)的屏蔽效率显著增加。当木质素添加量达到12wt%时,L-CNF复合膜仍具有40%的透光率,而且在UVA及UVB波段的紫外光屏蔽效率分别达到98%和100%,紫外光屏蔽性能优异。通过合理调控木质素的添加量,L-CNF复合膜有望实现在光敏材料覆膜、食品包装材料等领域的应用价值。

     

  • 图  1  木质素-纳米纤维素(L-CNF)复合膜的制备流程图:(a)羧甲基化预处理;(b)高压均质;(c)真空抽滤-热压干燥

    Figure  1.  Schematic diagram of the preparation of lignin-cellulose nanofiber (L-CNF) composite film: (a) Carboxymethylation pretreatment; (b) High pressure homogenization; (c) Vacuum-assisted filtration and dry treatment

    图  2  CNF及L-CNF浆料的光学照片((a), (b))及AFM图像((c), (d))

    Figure  2.  Optical photographs ((a), (b)) and AFM images ((c), (d)) of CNF and L-CNF pulps

    图  3  CNF膜的表面及横截面((a), (a’))和分别对应木质素添加量为4wt%、12wt%、25wt%、50wt%的L-CNF复合膜的表面及横截面((b), (b’))、((c), (c’))、((d), (d’))、((e), (e’)) SEM图像

    Figure  3.  SEM images of surface and cross-section of CNF film ((a), (a’)) and L-CNF composite film with 4wt%, 12wt%, 25wt%, 50wt% lignin additions ((b), (b’)), ((c), (c’)), ((d), (d’)), ((e), (e’))

    图  4  CNF膜及L-CNF复合膜的成形过程示意图:(a) CNF膜 ;(b) L-CNF复合膜; (c) 高压均质 ;(d) 热压干燥 ;(e) 氢键作用

    Figure  4.  Schematic diagram of the forming process of CNF film and L-CNF composite film: (a) CNF film; (b) L-CNF composite film; (c) High pressure homogenization; (d) Dry treatment; (e) Hydrogen bonding

    图  5  CNF膜及L-CNF复合膜的光学照片、透光率和吸光度图谱

    Figure  5.  Optical photographs and light transmittance, absorbance spectra of CNF film and L-CNF composite film

    图  6  不同木质素添加量的L-CNF复合膜的紫外光屏蔽性能

    Figure  6.  UV-blocking performance of L-CNF composite film with different lignin additions

    图  7  CNF膜及L-CNF复合膜的表面色度值

    Figure  7.  Color parameters of CNF film and L-CNF composite film

    图  8  不同木质素添加量的L-CNF复合膜的紫外光屏蔽效果图

    Figure  8.  Optical photographs of L-CNF composite film with different lignin additions under ultraviolet light

  • [1] STRICKLEY J D, MESSERSCHMIDT J L, AWAD M E, et al. Immunity to commensal papillomaviruses protects against skin cancer[J]. Nature,2019,575:519-522. doi: 10.1038/s41586-019-1719-9
    [2] GAUSE S, CHAUHAN A. Incorporation of ultraviolet (UV) absorbing nanoparticles in contact lenses for Class 1 UV blocking[J]. Journal of Materials Chemistry B,2016,4:327-339.
    [3] QU L J, TIAN M W, HU X L, et al. Functionalization of cotton fabric at low graphene nanoplate content for ultrastrong ultraviolet blocking[J]. Carbon,2014,80:565-574. doi: 10.1016/j.carbon.2014.08.097
    [4] LEBRETON L C M, ZWET J V D, DAMSTEEG J W, et al. River plastic emissions to the world's oceans[J]. Nature Communications,2017,8:15611. doi: 10.1038/ncomms15611
    [5] JAMBECK J R, GEYER R, WILCOX C, et al. Plastic waste inputs from land into the ocean[J]. Science,2015,347:768. doi: 10.1126/science.1260352
    [6] KUMAR R, RAI B, GAHLYAN S, et al. A comprehensive review on production, surface modification and characterization of nanocellulose derived from biomass and its commercial applications[J]. Express Polymer Letters,2021,15(2):104-120. doi: 10.3144/expresspolymlett.2021.11
    [7] PANG B, JIANG G Y, ZHOU J H, et al. Molecular-scale design of cellulose-based functional materials for flexible electronic devices[J]. Advanced Electronic Materials,2020:1-18.
    [8] ABITBOL T, AHNIYAZ A, ASENCIO R A, et al. Nanocellulose-based hybrid materials for UV blocking and mechanically robust barriers[J]. ACS Applied BioMaterials,2020,3(4):2245-2254. doi: 10.1021/acsabm.0c00058
    [9] HATTORI H, IDE Y, SANO T. Microporous titanate nanofibers for highly efficient UV-protective transparent coating[J]. Journal of Materials Chemistry A,2014,2:16381. doi: 10.1039/C4TA02975E
    [10] JIANG Y Q, SONG Y Y, MIAO M, et al. Transparent nanocellulose hybrid films functionalized with ZnO nanostructures for UV-blocking[J]. Journal of Materials Chemistry C,2015,3(26):6717-6724. doi: 10.1039/C5TC00812C
    [11] CORREA B A M, GONCALVES A S, SOUZA A M T D, et al. Molecular modeling studies of the structural, electronic, and UV absorption properties of benzophenone deriva-tives[J]. Journal of Physical Chemistry A,2002,116(45):10927-10933.
    [12] NIU X, LIU Y T, FANG G G, et al. Highly transparent, strong, and flexible films with modified cellulose nano-fiber bearing UV shielding property[J]. Biomacromolecules,2018,19(12):4565-4575. doi: 10.1021/acs.biomac.8b01252
    [13] VISHTAL A G, KRASLAWSKI A. Challenges in industrial applications of technical lignins[J]. BioResources,2011,6:3547-3568. doi: 10.15376/biores.6.3.3547-3568
    [14] QIAN Y, QIU X Q, ZHU S P. Lignin: a nature-inspired sun blocker for broadspectrum sunscreens[J]. Green Che-mistry,2015,17(320):6079.
    [15] SADEGHIFAR H, RAGAUSKAS A. Lignin as a UV light blocker-A review[J]. Polymers,2020,12:1134. doi: 10.3390/polym12051134
    [16] BIAN H Y, CHEN L D, DONG M L, et al. Natural lignocellulosic nanofibril film with excellent ultraviolet blocking performance and robust environment resistance[J]. International Journal of Biological Macromolecules,2020,166:1578-1585.
    [17] SADEGHIFA H, VENDITTI R A, JUR J S, et al. Cellulose-lignin biodegradable and flexible UV protection film[J]. ACS Sustainable Chemistry & Engineering,2017,5:625-631.
    [18] PARIT M, SAHA P, DAVIS V A, et al. Transparent and homogenous cellulose nanocrystal/lignin UV protection films[J]. ACS Omega,2018,3:10679-10691. doi: 10.1021/acsomega.8b01345
    [19] WU R L, WANG X L, LI F, et al. Green composite films prepared from cellulose, starch and lignin in room tempera-ture ionic liquid[J]. Bioresource Technology,2009,100(9):2569-2574. doi: 10.1016/j.biortech.2008.11.044
    [20] 中华人民共和国国家质量监督检验验疫总局. GB/T 2410—2008 透明塑料透光率和雾度的测定[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. GB/T 2014—2008 Determi-nation of the luminous transmittance and haze of transpa-rent plastics[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [21] American Association of Textile Chemists and Colorists. Transmittance or blocking of erythemally weighted ultravio-let radiation through fabrics: AATCC test method 183[S]. United States: American Association of Textile Chemists and Colorists, 2014.
    [22] 刘浩学, 武兵, 徐艳芳, 等. 印刷色差学[M]. 北京: 中国轻工业出版社, 2008.

    LIU H X, WU B, XU Y F, et al. Color science and technology[M]. Beijing: China Light Industry Press, 2008(in Chinese).
    [23] 杨淑蕙, 邱玉桂, 谭国民, 等. 植物纤维化学[M]. 北京: 中国轻工业出版社, 2001: 1.

    YANG S H, QIU Y G, TAN G M, et al. The chemistry of plant fibers[M]. Beijing: China Light Industry Press, 2001: 1(in Chinese).
    [24] JIANG B, CHEN C J, LIANG Z Q, et al. Lignin as a wood-inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement[J]. Advanced Functio-nal Materials,2020,30(4):1906307.
    [25] FAROOQ M, ZOU T, RIVIERE G, et al. Strong, ductile, and waterproof cellulose nanofibril composite films with colloidal lignin particles[J]. Biomacromolecules,2019,20:693-704. doi: 10.1021/acs.biomac.8b01364
    [26] GORDOBIL O, MORIANA R, ZHANG L M, et al. Assesment of technical lignins for uses in biofuels and biomaterials: Structure-related properties, proximate analysis and chemi-cal modification[J]. Industrial Crops and Products,2016,83:155-165. doi: 10.1016/j.indcrop.2015.12.048
  • 加载中
图(9)
计量
  • 文章访问数:  1330
  • HTML全文浏览量:  1223
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-06
  • 修回日期:  2021-05-15
  • 录用日期:  2021-06-01
  • 网络出版日期:  2021-06-09
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回