留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石蜡对无机复合相变储热体系的改性研究

杨效田 沈梁玉 王彩龙 杨强斌 刘敏

杨效田, 沈梁玉, 王彩龙, 等. 石蜡对无机复合相变储热体系的改性研究[J]. 复合材料学报, 2022, 39(5): 2421-2429. doi: 10.13801/j.cnki.fhclxb.20210609.005
引用本文: 杨效田, 沈梁玉, 王彩龙, 等. 石蜡对无机复合相变储热体系的改性研究[J]. 复合材料学报, 2022, 39(5): 2421-2429. doi: 10.13801/j.cnki.fhclxb.20210609.005
YANG Xiaotian, SHEN Liangyu, WANG Cailong, et al. Study on paraffin modifying inorganic composite phase change heat storage system[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2421-2429. doi: 10.13801/j.cnki.fhclxb.20210609.005
Citation: YANG Xiaotian, SHEN Liangyu, WANG Cailong, et al. Study on paraffin modifying inorganic composite phase change heat storage system[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2421-2429. doi: 10.13801/j.cnki.fhclxb.20210609.005

石蜡对无机复合相变储热体系的改性研究

doi: 10.13801/j.cnki.fhclxb.20210609.005
基金项目: 甘肃省科技重点项目(1102GKDA049);重庆市教育委员会科学技术研究项目(KJQN202001317)
详细信息
    通讯作者:

    杨效田,博士,副研究员,硕士生导师,研究方向为表面工程及能源材料  E-mail:398830990@qq.com

  • 中图分类号: TB321

Study on paraffin modifying inorganic composite phase change heat storage system

  • 摘要: 水合盐相变储热材料普遍存在的过冷和相分离现象是影响其热稳定性和热性能的关键问题。以中低温水合盐相变储热材料MgCl2∙6H2O(MCH)和MgSO4∙7H2O(MSH)为研究对象,以活性炭(ACC)为添加剂,采用熔融共混法制备了MCH-MSH-ACC混合体系,并以石蜡(PA)为调节剂,制备了MCH-MSH-ACC/PA复合材料相变体系。研究了PA对复合相变体系的相变焓、相变温度、过冷度及相分离的影响。结果表明:微量PA的添加有助于提升MSH-MCH-ACC/PA体系的相变储热性能,和其他PA含量体系相比较,PA含量为0.5wt%的体系在储热阶段所需时间最短,而放热阶段持续时间最长,其初始相变焓值可达到321.75 kJ/kg,循环试验后相变焓稳定在310.25 kJ/kg。所制备的新型共混MSH-MCH-3wt%ACC/0.5wt%PA复合相变体系具有良好的储热性能和循环稳定性能。

     

  • 图  1  MgCl2∙6H2O (MCH)-MgSO4∙7H2O (MSH)-活性炭(ACC)/石蜡(PA)复合材料制备过程

    Figure  1.  Preparation of MgCl2∙6H2O (MCH)-MgSO4∙7H2O (MSH)-activated carbon (ACC)/paraffin (PA) composites

    图  2  不同ACC浓度下MCH-MSH-ACC体系的过冷度曲线

    Figure  2.  Subcooling curve of the MCH-MSH-ACC system under different ACC concentrations

    图  3  3wt%和4wt%ACC浓度的MCH-MSH-ACC复合材料降温曲线

    Figure  3.  Cooling curves of 3wt% and 4wt% ACC concentrations MCH-MSH-ACC composite materials

    图  4  不同PA含量的复合材料热循环前和循环后的DSC曲线

    Figure  4.  DSC curves of composite materials with different PA contents before and after thermal cycle

    图  5  MCH-MSH-ACC/PA复合相变材料随热循环的质量损失曲线(T为测试值;F为拟合值)

    Figure  5.  Mass change curves of MCH-MSH-ACC/PA composite PCM materials with thermal cycle (T—test value; F—fitting value)

    图  6  不同石蜡含量复合材料的温度变化曲线

    Figure  6.  Temperature change curve of composite materials with different paraffin content

    图  7  PA含量为0.5wt%的复合相变材料的热稳定测试曲线

    Figure  7.  Thermal stability test curve of composite phase change material with 0.5wt%PA

    图  8  不同PA含量复合相变材料循环试验后的表面形貌

    Figure  8.  Surface morphology of composite phase change materials with different paraffin content after cyclic test

    图  9  含0.5wt%PA复合相变材料元素分布

    Figure  9.  Elemental distribution of composite phase change material with 0.5wt%PA

    图  10  不同PA含量的复合材料10次循环后的XRD图谱

    Figure  10.  XRD patterns of composites with different PA contents after 10 cycles

    1—MgCl2·6H2O; 2—MgCl2·H2O; 3—MgSO4·7H2O; 4—Mg2Cl(OH)3·4H2O; 5—Mg3Cl(OH)5·4H2O; 6—Mg3(OH)5Cl·3H2O; 7—Mg10Cl2(OH)18·5H2O; 8—PA

    表  1  不同ACC浓度下MCH-MSH-ACC系统的过冷度数值

    Table  1.   Subcooling value of the MCH-MSH-ACC system under different ACC concentrations

    SampleUndercooling/℃
    MCH-MSH 6.63
    MCH-MSH-1wt%ACC 4.74
    MCH-MSH-2wt%ACC 1.12
    MCH-MSH-3wt%ACC 0
    MCH-MSH-4wt%ACC 0
    下载: 导出CSV

    表  2  不同PA含量的MCH-MSH-ACC/PA复合材料的相变特性

    Table  2.   Phase change properties of MCH-MSH-ACC/PA composite PCMs with different PA contents

    ConditionSampleOnset temperature
    Tm/℃
    Peak temperature
    Tp/℃
    End temperature
    Te/℃
    Before cycle MCH-MSH-ACC 88.87 97.82 115.98
    MCH-MSH-ACC/0.5wt%PA 82.16 91.78 111.96
    MCH-MSH-ACC/1.0wt%PA 85.30 93.29 115.31
    MCH-MSH-ACC/1.5wt%PA 93.11 100.69 117.33
    MCH-MSH-ACC/2.0wt%PA 92.07 101.03 119.82
    After cycle MCH-MSH-ACC 98.46 109.77 117.14
    MCH-MSH-ACC/0.5wt%PA 83.62 93.15 111.70
    MCH-MSH-ACC/1.0wt%PA 96.12 105.17 115.21
    MCH-MSH-ACC/1.5wt%PA 98.83 107.17 114.30
    MCH-MSH-ACC/2.0wt%PA 101.36 108.01 115.11
    下载: 导出CSV
  • [1] DINCER I, DOST S, LI X G. Thermal energy storage applications from an energy saving perspective[J]. International Journal of Global Energy Issues,1997,9(4-6):351-364.
    [2] PUTRA N, RAWI S, MMAD M A, et al. Preparation of beeswax/multi-walled carbon nanotubes as novel shape- stable nanocomposite phase-change material for thermal energy storage[J]. Journal of Energy Storage,2019,21(2):32-39.
    [3] SWA B, TYA B, ZKA B, et al. Corrigendum to: “Thermal conductivity enhancement on phase change materials for thermal energy storage: A review”[J]. Energy Storage Materials,2020,33(6):88-97.
    [4] XU S Z, LEMINGTON, WANG R Z, et al. A zeolite 13X/magnesium sulfate-water sorption thermal energy storage device for domestic heating[J]. Energy Conversion and Management,2018,17:98-109.
    [5] MOHAN G, MAHESH B V, VIDAL J G, et al. Assessment of a novel temary eutectic chloride salt for next generation high-temperature sensible heat storage[J]. Energy Conversion and Management,2018,167:156-164. doi: 10.1016/j.enconman.2018.04.100
    [6] WANG Yan, YU Kaixiang, HAO Peng, et al. Preparation and thermal properties of sodium acetate trihydrate as a novel phase change material for energy storage[J]. Energy,2019,167(10):269-274.
    [7] XIE Baoshan, LI Chuanchang, ZHANG Bo, et al. Evaluation of stearic acid/coconut shell charcoal composite phase change thermal energy storage materials for tankless solar water heater[J]. Energy and Built Environment,2020,1(2):187-198. doi: 10.1016/j.enbenv.2019.08.003
    [8] FERCHAUD C J, ZONDAG H A, VELDHUI J B, et al. Study of the reversible water vapour sorption process of MgSO4·7H2O and MgCl2·6H2O under the conditions of seasonal solar heat storage[J]. Journal of Physics Conference,2012,395(1):91-95.
    [9] POSERN K, KAPS C. Calorimetric studies of thermochemical heat storage material based on mixtures of MgSO4 and MgCl2 [J]. Thermochimica Acta,2010,502(1-2):73-76. doi: 10.1016/j.tca.2010.02.009
    [10] JAB BA RI-HICHRI A, BENNICI S, UROUX A A. Water sorption heats on silica-alumina-based composites for interseasonal heat storage[J]. Journal of Thermal Analysis and Calorimetry,2014,118(2):1111-1118. doi: 10.1007/s10973-014-3886-0
    [11] SUGIMOTO K, DINNEBIER R E, HANSON J C. Structures of three dehydration products of bischofite from in situ synchrotron powder diffraction data (MgCl2·nH2O; n=1, 2, 4)[J]. Acta Crystallographica Section B Structural Science,2010,63(2):235-242.
    [12] SHKATUOV A, RYU J, KATO Y, et al. Composite material “Mg(OH)2/vermiculite”: A promising new candidate for storage of middle temperature heat[J]. Energy,2012,44(1):1028-1034. doi: 10.1016/j.energy.2012.04.045
    [13] CAO Yufeng, FAN Dongli, LIN Shaohui, et al. Phase change materials based on comb-like polynorbornenes and octadecylamine-functionalized graphene oxide nanosheets for thermal energy storage[J]. Chemical Engineering Journal,2020,389:124318. doi: 10.1016/j.cej.2020.124318
    [14] RAN Xiaofeng, WANG Haoran, ZHONG Yajuan, et al. Thermal properties of eutectic salts/ceramics/expanded graphite composite phase change materials for high-temperature thermal energy storage[J]. Solar Energy Materials and Solar Cells,2021,225:111047. doi: 10.1016/j.solmat.2021.111047
    [15] 杨希贤, 黄宇宏, 王智辉, 等. 碳纳米/氢氧化锂复合材料的低温化学蓄热性能研究[J]. 工程热物理学报, 2016, 37(12):2512-2516.

    YANG Xixian, HUANG Hongyu, WANG Zhihui, et al. Study on low temperature chemical heat storage properties of carbon nanometer/lithium hydroxide composites[J]. Journal of Engineering Thermophysics,2016,37(12):2512-2516(in Chinese).
    [16] YU N, WANG R Z, LU Z S, et al. Study on consolidated composite sorbents impregnated with LiCl for thermal energy storage[J]. International Journal of Heat and Mass Transfer,2015,84:660-670. doi: 10.1016/j.ijheatmasstransfer.2015.01.065
    [17] 马晓春, 刘延君, 刘函, 等. 石蜡@TiO2/CNTs复合相变材料制备及其热物性[J]. 浙江工业大学学报, 2020, 48(1):85-89. doi: 10.3969/j.issn.1006-4303.2020.01.014

    MA Xiaochun, LIU Yanjun, LIU Han, et al. Preparation and thermal properties of paraffin@TiO2/CNTs composite phase change materials[J]. Journal of Zhejiang University of Technology,2020,48(1):85-89(in Chinese). doi: 10.3969/j.issn.1006-4303.2020.01.014
    [18] HOLGER U, RAMMELBERG, THOMAS O, et al. Thermochemical heat storage materials-performance of mixed salt hydrates[J]. Solar Energy,2016,136(10):571-589.
    [19] 满亚辉. 相变潜热机理及其应用技术研究[D]. 长沙: 国防科学技术大学, 2010.

    MAN Yahui. Study on latent heat mechanism of phase change and its application technology[D]. Changsha: University of Defence Science and Technology, 2010(in Chinese).
    [20] 李玉婷, 周永全, 葛飞, 等. 无机水合盐相变储能材料的过冷及相分离研究进展[J]. 盐湖研究所, 2018, 26(1):81-86.

    LI Yuting, ZHOU Yongquan, GE Fei, et al. Research progress on supercooling and phase separation of inorganic hydrate phase change energy storage materials[J]. Salt Lake Institute,2018,26(1):81-86(in Chinese).
    [21] 赵长颖, 潘智豪, 王倩, 等. 多孔介质的相变和热化学储热性能[J]. 科学通报, 2016, 61(17):1897-1911.

    ZHAO Changying, PAN Zhihao, WANG Qin, et al. Phase transition and thermochemical thermal storage properties of porous media[J]. Scientific Bulletin,2016,61(17):1897-1911(in Chinese).
    [22] 卢竼漪, 侯峰, 徐贵钰. 碳纳米管-无机盐复合成核剂对MgCl2·6H2O-CaCl2·6H2O体系储热性能的影响[J]. 稀有金属材料与工程, 2018, 47(S1):283-287.

    LU Fanyi, HOU Feng, XU Guiyu. The effect of carbon nano-tube-inorganic salt composite nucleating agent on the heat storage performance of MgCl2·6H2O-CaCl2·6H2O system[J]. Rare Metal Materials and Engineering,2018,47(S1):283-287(in Chinese).
    [23] WU Shaofei, YAN Ting, KUAI Zihan, et al. Experimental and numerical study of modified expanded graphite/hydrated salt phase change material for solar energy storage[J]. Solar Energy,2020,205:474-486. doi: 10.1016/j.solener.2020.05.052
    [24] 吴东灵, 李廷贤, 何峰, 等. 三水醋酸钠相变储能复合材料改性制备及储/放热特性[J]. 化工学报, 2018, 69(7):2860-2868.

    WU Dongling, LI Tingxian, HE Feng, et al. Preparation of modified storage/exothermic properties of sodium acetate phase change energy storage composites[J]. Journal of Chemical Engineering,2018,69(7):2860-2868(in Chinese).
    [25] 李敬会, 姜贵文, 黄菊花. 铝蜂窝增强膨胀石墨/石蜡复合材料的制备和性能研究[J]. 化工新型材料, 2018, 46: 551(8): 95-98.

    LI Jinghui, JIANG Guiwen, HUANG Juhua. Preparation and properties of aluminum honeycomb reinforced expanded graphite/paraffin composites[J]. New Chemical Materials, 2018, 46: 51(8): 95-98(in Chinese).
    [26] 赵康. 复合式相变蓄热建筑围护结构的构建及节能效果研究[D] 锦州: 辽宁工业大学, 2018.

    ZHAO Kang. Construction and energy saving effect of complex phase change thermal storage building enclosure[D]. Jinzhou: Liaoning University of Technology, 2018(in Chinese).
    [27] BO Yu, LAN Xiang. Composition and morphology of the thermal decomposition products of 3Mg(OH)2·MgCl2·8H2O nanowires[J]. Particuology, 2017, 30(1): 129-134.
    [28] LELE A F, KUZNIK F, OPEL O, et al. Performance analysis of a thermochemical based heat storage as an addition to cogeneration systems[J]. Energy Conversion and Management,2015,106:1327-1344. doi: 10.1016/j.enconman.2015.10.068
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  861
  • HTML全文浏览量:  427
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-23
  • 修回日期:  2021-05-23
  • 录用日期:  2021-06-02
  • 网络出版日期:  2021-06-09
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回