Preparation, properties and application of highly hazy and transparent cellulose films for solar cells
-
摘要: 将可持续的纤维素材料与电子器件结合是当今学术界的研究热点。高雾度透明纤维素薄膜是一种具有特殊光学性能的纸张。它除了具有普通纸张的优点(可降解、成本低、柔性、质轻等)外,还呈现出高的透光率和优异的光散射性能,可作为绿色光学透明材料应用于太阳能电池,提升电池的光电转化效率。本文首先简要介绍了高雾度透明纤维素薄膜的发展历程;接着,详细总结了高雾度透明纤维素薄膜的制备方法及其性能(如光学、力学、热稳定性、耐水等);然后论述了现阶段这类薄膜在太阳能电池中的应用进展;最后,总结了高雾度透明纤维素薄膜存在的科学技术问题,并对其今后的研究方向以及应用前景进行了展望。Abstract: Integrating sustainable cellulose materials into electronic devices is a hot research topic in academic communities. Highly transparent cellulose film with high transmission haze is a kind of paper with special optical properties. In addition to the advantages (degradability, low cost, flexibility, light weight, etc.) of ordinary paper, it also presents high transparency and strong light scattering behavior (high transmission haze), and has the potential to use in solar cells as a green optical transparent material to improve the power conversion efficiency. In this review, the development process of highly hazy and transparent cellulose film was first introduced. Then, the preparation and properties (such as optical properties, mechanical properties, thermal stability and water resistance) of highly transparent and hazy cellulose films were summarized in detail. After that, the progress in the use of transparent and hazy cellulose film in solar cells was discussed. Finally, scientific and technical problems of highly transparent and hazy cellulose films for solar cells were summarized, and their challenges and future research direction were provided as well.
-
Key words:
- high transmission haze /
- high transparency /
- cellulose film /
- light scattering /
- solar cells
-
图 4 高雾度透明纤维素薄膜的制备方法:(a)真空抽滤法[9,35];(b)铸涂法[39];(c)涂布法[12];(d)浸渍法[43];(e)纤维表面选择性溶解法[31,45];(f)“自上而下”法[32]
Figure 4. Preparation methods of highly hazy and transparent cellulose films: (a) Vacuum filtration[9,35]; (b) Casting[39]; (c) Coating[12]; (d) Impregnation[43]; (e) Surface selective dissolution[31,45]; (f) Top-down[32]
TEMPO—2,2,6,6-Tetramethylpiperidine-1-oxyl radical; TOCN—2,2,6,6-Tetramethylpiperidine-1-oxyl radical oxidized cellulose nanofibrils; TOWFs—TEMPO-oxidized wood fibers
图 5 一束光分别通过普通纸(a)、超清晰膜(b)、高雾度透明薄膜(c)所发生的反射、折射及散射现象[43];(d)高雾度透明纤维素薄膜的照片[31];高雾度透明纤维素薄膜(Hazy paper)与聚对苯二甲酸乙二酯(PET)、柔性玻璃(Flexible glass)的透光率(T) (e)及雾度(H)对比(f)[31]
Figure 5. Reflection, refraction, and scattering of a beam of light through common paper (a), ultra clear film(b), and highly hazy and transparent film[43]; (d) Photograph of highly hazy and transparent cellulose film[31]; Comparison of transmittance (T) (e) and haze (H) (f) of highly hazy and transparent cellulose film (Hazy paper), poly (ethylene terephthalate) (PET) and flexible glass[31]
图 6 (a)普通纸、羧甲基纤维素(CMC)膜以及高雾度透明复合膜的应力-应变曲线[43];(b)各向异性高雾度透明薄膜和各向同性纳米纸的应力-应变曲线[33];(c)普通纸、TEMPO-氧化纸、CMC膜以及高雾度透明复合膜的耐折度[43];(d)高雾度透明复合膜和TEMPO-氧化纸的耐折性能比较[43]
Figure 6. (a) Stress-strain curves of common paper, carboxymethyl cellulose (CMC) film and highly hazy and transparent composite film[43]; (b) Stress-strain curves of anisotropic highly hazy and transparent film and isotropic nanopaper[33]; (c) Folding endurance of common paper, TEMPO-oxidized paper, CMC film, and highly hazy and transparent composite film[43]; (d) Folding measurement of highly hazy and transparent composite film and TEMPO-oxidized paper[43]
图 7 高雾度透明纤维薄膜的热稳定性:由木质纤维和CMC组成的高雾度透明薄膜、纯CMC薄膜、普通纸以及由TEMPO氧化木浆组成的高雾度透明薄膜的热重分析(a)和极限氧指数分析(LOI) (b);(c)由木质纤维和CMC组成的高雾度透明薄膜(A)、纯CMC膜(B)、普通纸(C)由TEMPO氧化木浆组成的高雾度透明薄膜(D)的垂直燃烧测试[43]
Figure 7. Thermal stability of highly hazy and transparent cellulose film: Thermogravimetric (a) and Limiting oxygen index (LOI) (b) analysis of highly hazy and transparent composite film made by wood fibers and CMC, CMC film, common paper and TEMPO-oxidized paper; (c) Vertical flame testing of highly hazy and transparent composite film (A), CMC film (B), common paper (C) and TEMPO oxidized paper (D)[43]
图 8 高雾度透明纤维复合薄膜的耐水性能:(a)高雾度透明纤维素薄膜吸水率和厚度随时间的变化以及吸水率的拟合曲线;(b)高雾度透明纤维素薄膜长度和宽度随浸泡时间的变化;(c)普通纸和高雾度透明纤维素薄膜的初始水接触角(WCA);(d)普通纸和高雾度透明纤维素薄膜在水中浸泡2小时后的照片;(e)普通纸、高雾度透明纤维素薄膜以及再生纤维素薄膜(RCF)的湿强度[34]
Figure 8. Water resistance of highly hazy and transparent cellulose composite film: (a) Water absorption and thickness change of composite film as a function of immersion time and corresponding fitting curves of time-dependent water absorption based on Box Lucas1 model; (b) Changes in length and width of composite film with increasing immersion time; (c) Original water contact angles (WCA) of paper and composite film; (d) Digital images of paper and composite film after immersing into water for two hours; (e) Wet strength of paper, composite film and RCF[34]
图 9 (a)贴有高雾度透明纤维素薄膜的有机太阳能电池的结构[9];贴附高雾度透明纤维素薄膜前后有机太阳能电池(b)和砷化镓太阳能电池(c)的电流密度-电压曲线(W和W/O分别代表未贴膜有和贴薄[9],插图为贴附高雾度透明纤维素薄膜的砷化镓太阳电池);(d)贴附高雾度透明纤维素薄膜前后砷化镓太阳电池在全可见光波段、不同入射角条件下的光反射率;(e)太阳能电池上入射光分布的示意图[32];(f)贴附高雾度透明纤维素薄膜前后砷化镓太阳能电池的电流密度-电压曲线[32]
Figure 9. (a) Structure of organic solar cells coated with highly hazy and transparent cellulose films[9]; Current densities-voltage curves of organic solar cells (b) and gallium arsenide (GaAS) solar cells (c) with (W) and without (W/O) highly hazy and transparent cellulose film[9]; (d) Optical reflectance of GaAs solar cells at different incidence angles and at all visible wavelengths before and after attaching highly hazy and transparent cellulose film[32]; (e) Schematic diagram of incident light distribution on a solar cell[32]; (f) Current densities-voltage curves of GaAs solar cells before and after attaching highly hazy and transparent cellulose film[32]
表 1 高雾度透明纤维素薄膜的制备与性能
Table 1. Preparation and properties of highly hazy and transparent cellulose films
Material Film
namePretreat-
mentPreparation
methodPreparation
timeT and H Mechanical
propertyThermo-
stabilityWater
resistanceRef. Northern wood pulp and CMC All-cellulose composite films — Impregnation >5 h T: 90%;
H: 82%Tensile stress:
140 MPa;
Toughness:
8.5 MJ·m−3;
Folding times:
3342Td: 254℃; LOI: 30% CA: 43° [43] Northern wood pulp and CMC Transparent and hazy paper — Impregnation + protonation >10 h T: 91%;
H: 84%Tensile stress:
108 MPa;
Folding times: 994— CA: 72°; Saturated water Absorptivity: 60%; Change in thickness: 25% [67] Bleached softwood kraft pulp Hazy TOCN films TEMPO oxidation + homogeni-
zationCasting + coating >24 h T: 85%;
H: 62%— — — [12] Bleached softwood kraft pulp Highly translucent and light-diffusive film TEMPO oxidation + homogeni-
zationCasting >12 h T: 90%;
H: 78%— — — [25] Bleached softwood kraft pulp Ag NW paper TEMPO oxidation + homogeni-
zationVacuum filtration — T: 91%;
H: 65%— — — [29] Bleached softwood pulp Highly transparent and hazy paper — Surface selective dissolution >8 h T: 90%;
H: 91%— — — [31] Bleached softwood kraft pulp Nanostruc-
tured paperTEMPO oxidation Vacuum filtration >10 h T: 96%;
H: 60%Tensile stress:
105 MPa— — [9] Basswood Anisotropic transparent paper — “Top-down” >8 h T: 90%;
H: 90%Tensile stress:
350 MPa; Toughness:
7.38 MJ·m−3— — [32] Basswood Anisotropic wood film — “Top-down” >8 h T: 90%;
H: 80%— — — [33] Northern wood pulp Highly transparent paper TEMPO oxidation Vacuum filtration >5 h T: 90%;
H: 84%Tensile stress:
89.2 MPa; Bursting strength: 85 MPa; Young's modulus: 7.73 GPa— — [39] Northern wood pulp Highly transparent paper TEMPO oxidation Casting 41-53 h T: 88%;
H: 72%Tensile stress:
85.3 MPa; Bursting strength: 124 MPa; Young's modulus: 12.89 GPa— — [39] Bleached softwood kraft pulp Highly hazy and transparent cellulose film Carboxy-
methylationVacuum filtration >2.5 h T: 89%;
H: 85%Tensile stress:
138 MPaTd: 179℃ — [40] Pine dissolving pulp Highly hazy transparent cellulose film TEMPO oxidation + ultrasoni-
cationCasting — T: 90%;
H: 76%Tensile stress:
22 MPaTd:
295-305℃;
CTE: 8.5-10.6 ppm/K— [78] Cellulose pulp Hazy transparent cellulose nanopaper Alkali treatment + homogeni-
zationVacuum filtration >10 h T: 90%;
H: 90%— — — [38] Bleached softwood pulp and CNF Bilayer hybrid paper TEMPO oxidation + homogeni-
zationVacuum filtration — T: 92%;
H: 70%— — — [23] Bleached softwood kraft pulp Nanostruc-
tured paperMicrofibrilla-tion Vacuum filtration >2.3 h T: 83%;
H: 89%Tensile stress:
18.5 MPa;
Young's modulus:
3.04 GPa— — [79] Bleached softwood kraft pulp Transparent and hazy all-cellulose composite films Impregnation >12 h T: 90%;
H: 95%Tensile stress: 37.03 MPa; Young's modulus: 1.90 GPa; Toughness:
2.78 MJ·m−3— CA: 76°; Saturated water Absorptivity: 59%; Change in thickness: 30% [34] Notes: CNF—Cellulose nanofibrils; Ag NW—Silver nanowire; Td—Thermal decomposition temperature; CTE—Coefficient of thermal expansion; CA—Contact angle. -
[1] LEWIS N S. Toward cost-effective solar energy use[J]. Science,2007,315(5813):798-801. doi: 10.1126/science.1137014 [2] POLMAN A, KNIGHT M, GARNETT E C, et al. Photovoltaic materials: Present efficiencies and future challenges[J]. Science,2016,352(6283):4424. [3] 赵紫原. 中电联报告: 2020年全国并网风电、太阳能并网发电量快速增长[EB/OL]. [2021-02-02]. http://guangfu.bjx.com.cn/news/20210202/1133995.shtml.ZHAO Ziyuan. China Electricity Federation: China's grid-connected wind and solar power generation grew rapidly in 2020[EB/OL]. [2021-02-02]. http://guangfu.bjx.com.cn/news/20210202/1133995.shtml(in Chinese). [4] BRONGERSMA M L, CUI Y, FAN S. Light management for photovoltaics using high-index nanostructures[J]. Nature Materials,2014,13(5):451-460. doi: 10.1038/nmat3921 [5] YAO Y, YAO J, NARASIMHAN V K, et al. Broadband light management using low-Q whispering gallery modes in spherical nanoshells[J]. Nature Communications,2012,3(1):1-7. [6] TANG J, HUO Z, BRITTMAN S, et al. Solution-processed core-shell nanowires for efficient photovoltaic cells[J]. Nature Nanotechnology,2011,6(9):568-572. doi: 10.1038/nnano.2011.139 [7] LIN Q, HUA B, LEUNG S F, et al. Efficient light absorption with integrated nanopillar/nanowell arrays for three-dimensional thin-film photovoltaic applications[J]. ACS Nano,2013,7(3):2725-2732. doi: 10.1021/nn400160n [8] KANG G, YOO J, AHN J, et al. Transparent dielectric nanostructures for efficient light management in optoelectronic applications[J]. Nano Today,2015,10(1):22-47. doi: 10.1016/j.nantod.2015.01.008 [9] FANG Z, ZHU H, YUAN Y, et al. Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells[J]. Nano Letters,2014,14(2):765-773. doi: 10.1021/nl404101p [10] HU L, ZHENG G, YAO J, et al. Transparent and conductive paper from nanocellulose fibers[J]. Energy & Environ-mental Science,2013,6(2):513-518. [11] SIRÓ I, PLACKETT D, HEDENQVIST M, et al. Highly transparent films from carboxymethylated microfibrillated cellulose: The effect of multiple homogenization steps on key properties[J]. Journal of Applied Polymer Science,2011,119(5):2652-2660. doi: 10.1002/app.32831 [12] YANG W, JIAO L, LIU W, et al. Morphology control for tunable optical properties of cellulose nanofibrils films[J]. Cellulose,2018,25(10):5909-5918. doi: 10.1007/s10570-018-1974-1 [13] 胡稳, 陈港, 方志强, 等. CMC/木质纤维复合纸的制备及性能[J]. 造纸科学与技术, 2017(6):1-3.HU W, CHEN G, FANG Z Q, et al. Preparation and properties of CMC/ lignocellulosic fiber composite paper[J]. Paper Science and Technology,2017(6):1-3(in Chinese). [14] ZHU H, FANG Z, PRETON C, et al. Transparent paper: Fabrications, properties, and device applications[J]. Energy & Environmental Science,2014,7(1):269-287. [15] YAO Y, TAO J, ZOU J, et al. Light management in plastic-paper hybrid substrate towards high-performance optoelectronics[J]. Energy & Environmental Science,2016,9(7):2278-2285. [16] HA D, FANG Z, HU L, et al. Paper-based anti-reflection coatings for photovoltaics[J]. Advanced Energy Materials,2014,4(9):1079-1098. [17] SEMMLER J, BLEY K, KLUPP TAYLOR R N, et al. Particulate coatings with optimized haze properties[J]. Advanced Functional Materials,2019,29(4):1806025. doi: 10.1002/adfm.201806025 [18] MCALPINE M C, AHMAD H, WANG D, et al. Highly ordered nanowire arrays on plastic substrates for ultrasen-sitive flexible chemical sensors[J]. Nature materials,2007,6(5):379-384. doi: 10.1038/nmat1891 [19] ROCHMAN C M, HOELLEIN T. The global odyssey of plastic pollution[J]. Science,2020,368(6496):1184-1185. doi: 10.1126/science.abc4428 [20] NOGI M, KARAKAWA M, KOMODA N, et al. Transparent conductive nanofiber paper for foldable solar cells[J]. Scientific Reports,2015,5:17254. doi: 10.1038/srep17254 [21] JACUCCI G, SCHERTEL L, ZHANG Y, et al. Light management with natural materials: From whiteness to transpa-rency[J]. Advanced Materials,2021,33(28):2001215. doi: 10.1002/adma.202001215 [22] LEONARD G L M, PAEZ C A, RAMÍREZ A E, et al. Interactions between Zn2+ or ZnO with TiO2 to produce an efficient photocatalytic, superhydrophilic and aesthetic glass[J]. Journal of Photochemistry and Photobiology A: Chemistry,2018,350:32-43. doi: 10.1016/j.jphotochem.2017.09.036 [23] FANG Z, ZHU H, PRESTON C, et al. Highly transparent and writable wood all-cellulose hybrid nanostructured paper[J]. Journal of Materials Chemistry C,2013,1(39):6191-6197. doi: 10.1039/c3tc31331j [24] 中国国家标准化管理委员会(标准制定单位). 透明塑料透光率和雾度的测定: GB/T 2410—2008[S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People’s Republic of China. Transparent plastics-determination of transmittance and haze: GB/T 2410—2008[S]. Beijing: China Stand-ards Press, 2008(in Chinese). [25] WU W, TASSI N G, ZHU H, et al. Nanocellulose-based translucent diffuser for optoelectronic device applications with dramatic improvement of light coupling[J]. ACS Applied Materials & Interfaces,2015,7(48):26860-26864. [26] BRUNETTI F, OPERAMOLLA A, CASTRO-HERMOSA S, et al. Printed solar cells and energy storage devices on paper substrates[J]. Advanced Functional Materials,2019,29(21):1806798. doi: 10.1002/adfm.201806798 [27] BIERMANN, CHRISTOPHER J. Handbook of pulping and papermaking (Second edition) [M]. Salt Lake City: Academic Press, 1996: 379-394. [28] NOGI M, IWAMATO S, NAKAGAITO A N, et al. Optically transparent nanofiber paper[J]. Advanced Materials,2009,21(16):1595-1598. doi: 10.1002/adma.200803174 [29] PRESTON C, FANG Z, MURRAY J, et al. Silver nanowire transparent conducting paper-based electrode with high optical haze[J]. Journal of Materials Chemistry C,2014,2(7):1248-1254. doi: 10.1039/C3TC31726A [30] ZHU H, PAVINIAN S, PRESTON C, et al. Transparent nanopaper with tailored optical properties[J]. Nanoscale,2013,5(9):3787-3792. doi: 10.1039/c3nr00520h [31] ZHU H, FANG Z, WANG Z, et al. Extreme light management in mesoporous wood cellulose paper for optoelectronics[J]. ACS Nano,2015,10(1):1369-1377. [32] JIA C, LI T, CHEN C, et al. Scalable, anisotropic trans-parent paper directly from wood for light management in solar cells[J]. Nano Energy,2017,36:366-373. doi: 10.1016/j.nanoen.2017.04.059 [33] ZHU M, WANG Y, ZHU S, et al. Anisotropic, transparent films with aligned cellulose nanofibers[J]. Advanced Materials,2017,29(21):1606284. doi: 10.1002/adma.201606284 [34] HOU G, LIU Y, ZHANG D, et al. Approaching theoretical haze of highly transparent all-cellulose composite films[J]. ACS Applied Materials & Interfaces,2020,12(28):31998-32005. [35] SEHAQUI H, LIU A, ZHOU Q, et al. Fast preparation procedure for large, flat cellulose and cellulose/inorganic nano-paper structures[J]. Biomacromolecules,2010,11(9):2195-2198. doi: 10.1021/bm100490s [36] YE D, LEI X, LI T, et al. Ultrahigh tough, super clear, and highly anisotropic nanofiber-structured regenerated cellulose films[J]. ACS Nano,2019,13(4):4843-4853. doi: 10.1021/acsnano.9b02081 [37] YANG W, JIAO L, MIN D, et al. Effects of preparation approaches on optical properties of self-assembled cellulose nanopapers[J]. RSC Advances,2017,7(17):10463-10468. doi: 10.1039/C6RA27529J [38] HSIEH M C, KOGA H, SUGANUMA K, et al. Hazy transparent cellulose nanopaper[J]. Scientific Reports,2017,7(1):1-7. doi: 10.1038/s41598-016-0028-x [39] ZHOU P, ZHU P, CHEN G, et al. A study on the transmission haze and mechanical properties of highly transparent paper with different fiber species[J]. Cellulose,2018,25(3):2051-2061. doi: 10.1007/s10570-018-1663-0 [40] 方志强, 吴彬, 李冠辉, 等. 基于羧甲基化木质纤维的高雾度, 高透明纸[J]. 造纸科学与技术, 2018, 37(6):1-5.FANG Zhiqiang, WU Bin, LI Guanhui, et al. Investigation on the highly transparent and hazy paper with carboxymethylated wood fibers[J]. Paper Science and Technology,2018,37(6):1-5(in Chinese). [41] VICENTE A T, ARAÚJO A, MENDES M J, et al. Multifunctional cellulose-paper for light harvesting and smart sensing applications[J]. Journal of Materials Chemistry C,2018,6(13):3143-3181. doi: 10.1039/C7TC05271E [42] BACHMANN K. The treatment of transparent papers: A review[J]. The Book and Paper Annual,1983,2:3-13. [43] HU W, CHEN G, LIU Y, et al. Transparent and hazy all-cellulose composite films with superior mechanical properties[J]. ACS Sustainable Chemistry & Engineering,2018,6(5):6974-6980. [44] 陈港, 胡稳, 朱朋辉, 等. 高透明羧甲基纤维素/纤维素纤维复合薄膜的制备及其力学性能[J]. 复合材料学报, 2018, 35(6):1574-1581.CHEN Gang, HU Wen, ZHU Penghui, et al. Preparation of highly transparent carboxymethyl cellulose/cellulose fiber composite films and mechanical properties[J]. Acta Materiae Compositae Sinica,2018,35(6):1574-1581(in Chinese). [45] FANG Z, ZHU H, PRESTON C, et al. Development, application and commercialization of transparent paper[J]. Translational Materials Research,2014,1(1):015004. doi: 10.1088/2053-1613/1/1/015004 [46] WANG S, LI T, CHEN C, et al. Transparent, anisotropic biofilm with aligned bacterial cellulose nanofibers[J]. Advanced Functional Materials,2018,28(24):1707491. doi: 10.1002/adfm.201707491 [47] CHENG Y, TIAN W, MI Q, et al. Highly transparent all-polysaccharide composite films with tailored transmission haze for light manipulation[J]. Advanced Materials Technologies,2020,5(9):2000378. [48] 杨蕊, 曹清华, 梅长彤, 等. 高孔隙率三维结构木材构建功能复合材料的研究进展[J]. 复合材料学报, 2020, 37(8):1796-1804.YANG Rui, CAO Qinghua, MEI Changtong, et al. Research progress of functional composite materials constructed from high porosity three-dimensional structural wood[J]. Acta Materiae Compositae Sinica,2020,37(8):1796-1804(in Chinese). [49] MOON R J, MARTINI A, NAIRN J, et al. Cellulose nanomaterials review: Structure, properties and nanocomposites[J]. Chemical Society Reviews,2011,40(7):3941-3994. doi: 10.1039/c0cs00108b [50] DIDDENS I, MURPHY B, KRISCH M, et al. Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering[J]. Macromolecules,2008,41(24):9755-9759. doi: 10.1021/ma801796u [51] ŠTURCOVÁ A, DAVIES G R, EICHHORN S J. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers[J]. Biomacromolecules,2005,6(2):1055-1061. doi: 10.1021/bm049291k [52] LAHIJI R R, XU X, REIFENBERGER R, et al. Atomic force microscopy characterization of cellulose nanocrystals[J]. Langmuir,2010,26(6):4480-4488. doi: 10.1021/la903111j [53] SAITO T, KURAMAE R, WOHLERT J, et al. An ultrastrong nanofibrillar biomaterial: The strength of single cellulose nanofibrils revealed via sonication-induced fragmentation[J]. Biomacromolecules,2012,14(1):248-253. [54] FANG Z, LI B, LIU Y, et al. Critical role of degree of polymerization of cellulose in super-strong nanocellulose films[J]. Matter,2020,2(4):1000-1014. doi: 10.1016/j.matt.2020.01.016 [55] ZHU H, XIAO Z, LIU D, et al. Biodegradable transparent substrates for flexible organic-light-emitting diodes[J]. Energy & Environmental Science,2013,6(7):2105-2111. [56] YAGYU H, SAITO T, ISOGAI A, et al. Chemical modification of cellulose nanofibers for the production of highly thermal resistant and optically transparent nanopaper for paper devices[J]. ACS Applied Materials & Interfaces,2015,7(39):22012-22017. [57] LUO Y, ZHANG J, LI X, et al. The cellulose nanofibers for optoelectronic conversion and energy storage[J]. Journal of Nanomaterials,2014,2014:11. [58] 王瑞平, 袁长龙, 陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17):2949-2957. doi: 10.11896/cldb.19050104WANG Ruiping, YUAN Changlong, TAO Jinsong. Modification of cellulose nanofibrils and its applicationin flexible electronics[J]. Materials Reports,2019,33(17):2949-2957(in Chinese). doi: 10.11896/cldb.19050104 [59] 王文俊, 崔小月, 朱海东, 等. 纳米纤维素纤维的表面改性及其对硝化纤维素膜力学性能的影响[J]. 兵工学报, 2016, 37(2):260-264. doi: 10.3969/j.issn.1000-1093.2016.02.010WANG Wenjun, CUI Xiaoyue, ZHU Haidong, et al. Surface modification of cellulose nano-fiber and its effect on mechanical properties of nitrocellulose film[J]. Acta Armamentarii,2016,37(2):260-264(in Chinese). doi: 10.3969/j.issn.1000-1093.2016.02.010 [60] JOHNSON R K, ZINK-SHARP A, GLASSER W G. Preparation and characterization of hydrophobic derivatives of TEMPO-oxidized nanocelluloses[J]. Cellulose,2011,18(6):1599-1609. doi: 10.1007/s10570-011-9579-y [61] 田晨. 纳米纤维素改性及其增强环境响应复合材料的研究[D]. 广州: 华南理工大学, 2015.TIAN Chen. Modification of nanocellulose and its enhancement for environmental response nanocompasites[D]. Guangzhou: South China University of Technology, 2015(in Chinese). [62] MELONE L, ROSSI B, PASTORI N, et al. TEMPO-oxidized cellulose cross-linked with branched polyethyleneimine: Nanostructured adsorbent sponges for water remediation[J]. ChemPlusChem,2015,80(9):1408-1415. doi: 10.1002/cplu.201500145 [63] RATTAZ A, MISHRA S P, CHABOT B, et al. Cellulose nano-fibres by sonocatalysed-TEMPO-oxidation[J]. Cellulose,2011,18(3):585. doi: 10.1007/s10570-011-9529-8 [64] KALIA S, BOUFI S, CELLI A, et al. Nanofibrillated cellulose: Surface modification and potential applications[J]. Colloid and Polymer Science,2014,292(1):5-31. doi: 10.1007/s00396-013-3112-9 [65] SAITO T, ISOGAI A. Ion-exchange behavior of carboxylate groups in fibrous cellulose oxidized by the TEMPO-med-iated system[J]. Carbohydrate Polymers,2005,61(2):183-190. doi: 10.1016/j.carbpol.2005.04.009 [66] SHIMIZU M, SAITO T, ISOGAI A. Water-resistant and high oxygen-barrier nanocellulose films with interfibrillar cross-linkages formed through multivalent metal ions[J]. Journal of Membrane Science,2016,500:1-7. doi: 10.1016/j.memsci.2015.11.002 [67] HU W, FANG Z, LIU Y, et al. Protonation process to enhance the water resistance of transparent and hazy paper[J]. ACS Sustainable Chemistry & Engineering,2018,6(9):12385-12392. [68] 李冠辉, 莫奇勇, 胡稳, 等. 壳聚糖/纤维素纤维复合纸的制备及性能研究[J]. 中国造纸, 2020, 39(11):1-9.LI Guanhui, MO Qiyong, HU Wen, et al. Study on preparation and properties of chitosan/cellulose fiber composite paper[J]. China Pulp & Paper,2020,39(11):1-9(in Chinese). [69] KANG G, BAE K, NAM M, et al. Broadband and ultrahigh optical haze thin films with self-aggregated alumina nanowire bundles for photovoltaic applications[J]. Energy & Environmental Science,2015,8(9):2650-2656. [70] MAHPEYKAR S M, ZHAO Y, LI X, et al. Cellulose nanocrystal: Polymer hybrid optical diffusers for index-matching-free light management in optoelectronic devices[J]. Advanced Optical Materials,2017,5(21):1700430. doi: 10.1002/adom.201700430 [71] LIM Y W, KWON O E, KANG S M, et al. Built-in haze glass-fabric reinforced siloxane hybrid film for efficient organic light-emitting diodes (OLEDs)[J]. Advanced Functional Materials,2018,28(33):1802944. doi: 10.1002/adfm.201802944 [72] LIN C J, YANG W T, CHOU C Y, et al. Hollow mesoporous TiO2 microspheres for enhanced photocatalytic degradation of acetaminophen in water[J]. Chemosphere,2016,152:490-495. doi: 10.1016/j.chemosphere.2016.03.017 [73] FANG Z, GONG A S, HU L. Lignocellulosics: Wood cellulose paper for solar cells [M]. Amsterdam: Elsevier, 2020: 279-295. [74] ZHOU Y, FUENTES-HERNANDEZ C, KHAN T M, et al. Recyclable organic solar cells on cellulose nanocrystal substrates[J]. Scientific Reports,2013,3:1536. doi: 10.1038/srep01536 [75] NAJAFABADI E, ZHOU Y, KNAUER K, et al. Efficient organic light-emitting diodes fabricated on cellulose nanocrystal substrates[J]. Applied Physics Letters,2014,105(6):124. [76] VOGGU V R, SHAM J, PFEFFER S, et al. Flexible CuInSe2 nanocrystal solar cells on paper[J]. ACS Energy Letters,2017,2(3):574-581. doi: 10.1021/acsenergylett.7b00001 [77] NOGI M, YANO H. Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry[J]. Advanced Materials,2008,20(10):1849-1852. doi: 10.1002/adma.200702559 [78] LIN C, WANG Q, DENG Q, et al. Preparation of highly hazy transparent cellulose film from dissolving pulp[J]. Cellulose,2019,26(6):4061-4069. doi: 10.1007/s10570-019-02367-3 [79] LI G, YU D, SONG Z, et al. Reducing formation time while improving transparency and strength of cellulose nanostructured paper with polyvinylpyrrolidone and Laponite[J]. Carbohydrate Polymers,2020,230:115580. doi: 10.1016/j.carbpol.2019.115580