留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米SiO2@黄麻纤维/PP复合材料多相界面结构与增韧机制

刘璇 崔益华 杨赟 聂文骏

刘璇, 崔益华, 杨赟, 等. 纳米SiO2@黄麻纤维/PP复合材料多相界面结构与增韧机制[J]. 复合材料学报, 2022, 39(3): 1026-1035. doi: 10.13801/j.cnki.fhclxb.20210608.003
引用本文: 刘璇, 崔益华, 杨赟, 等. 纳米SiO2@黄麻纤维/PP复合材料多相界面结构与增韧机制[J]. 复合材料学报, 2022, 39(3): 1026-1035. doi: 10.13801/j.cnki.fhclxb.20210608.003
LIU Xuan, CUI Yihua, YANG Yun, et al. Multi-phase interface structure and toughening mechanism for nano-SiO2@jute fiber/PP composites[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1026-1035. doi: 10.13801/j.cnki.fhclxb.20210608.003
Citation: LIU Xuan, CUI Yihua, YANG Yun, et al. Multi-phase interface structure and toughening mechanism for nano-SiO2@jute fiber/PP composites[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1026-1035. doi: 10.13801/j.cnki.fhclxb.20210608.003

纳米SiO2@黄麻纤维/PP复合材料多相界面结构与增韧机制

doi: 10.13801/j.cnki.fhclxb.20210608.003
详细信息
    通讯作者:

    崔益华,博士,教授,研究方向为植物纤维增强复合材料 E-mail:cuiyh@nuaa.edu.cn

  • 中图分类号: TB332

Multi-phase interface structure and toughening mechanism for nano-SiO2@jute fiber/PP composites

  • 摘要: 采用溶胶-凝胶法在黄麻纤维表面获得了纳米SiO2(n-SiO2)沉积层,经过模压工艺,制备了n-SiO2沉积的黄麻纤维/聚丙烯复合材料(n-SiO2@黄麻纤维/PP复合材料)。通过分子动力学(MD)模拟建立了n-SiO2@黄麻纤维/PP复合材料多相界面的分子模型,结合复合材料冲击性能与断口形貌的分析,揭示了此类混杂型复合材料的多相界面结构与增韧机制。黄麻纤维经过n-SiO2沉积处理,其增强PP复合材料的冲击韧性提高了54.87%。n-SiO2沉积层通过与黄麻纤维之间的C—O—Si化学键作用及其与PP基体分子链之间的机械锁结作用,在黄麻纤维与PP基体之间形成了界面相,使得黄麻纤维/PP复合材料的界面结合能提高了27.22%。当复合材料发生冲击破坏时,n-SiO2界面相将引发“银纹效应”,使得裂纹的传播方向发生倾斜或扭转,延长了裂纹的扩展路径,消耗了裂纹传播的能量,减缓了裂纹的扩展速度。此外,在冲击失效过程中,结合性能良好的多相界面不仅能够诱导PP基体产生塑性变形,吸收大量的冲击能量,而且可将部分冲击能量传递至黄麻纤维内部,使得微纤之间发生界面脱黏。由于黄麻纤维/PP基体界面结合强度小于黄麻纤维内部微纤之间的界面结合强度,因此微纤之间的界面脱黏将会消耗更多的冲击能量。

     

  • 图  1  羧甲基化处理前后黄麻纤维的表面分子模型

    Figure  1.  Molecular models of the surfaces for jute fibers before and after carboxymethyl treatment

    图  2  纳米SiO2(n-SiO2)沉积层的表面分子模型

    Figure  2.  Molecular model of the surface for nano-SiO2(n-SiO2) layer

    图  3  聚丙烯(PP)基体的表面分子模型

    Figure  3.  Molecular model of the surface for polypropylene (PP)

    图  4  n-SiO2沉积处理前后黄麻纤维/PP复合材料界面的分子模型

    Figure  4.  Interface molecular models of jute fiber/PP composites before and after n-SiO2 deposition

    图  5  n-SiO2沉积处理前后黄麻纤维/PP复合材料界面的分子浓度曲线

    Figure  5.  Relative concentrations of the interfaces for jute fiber/PP composites before and after n-SiO2 deposition

    图  6  n-SiO2沉积处理前后黄麻纤维/PP复合材料的界面结合性能

    Figure  6.  Interfacial binding energies of jute fiber/PP composites before and after n-SiO2 deposition

    图  7  n-SiO2沉积处理前后黄麻纤维的表面微观形貌

    Figure  7.  Surface morphologies of jute fibers before and after n-SiO2 deposition

    图  8  n-SiO2沉积处理前后黄麻纤维/PP复合材料的冲击韧性

    Figure  8.  Impact toughness of jute fiber/PP composites before and after n-SiO2 deposition

    图  9  n-SiO2沉积处理前后黄麻纤维/PP复合材料的冲击断口形貌

    Figure  9.  Fracture morphologies of jute fiber/PP composites before and after n-SiO2 deposition

    图  10  n-SiO2沉积处理前后黄麻纤维/PP复合材料的冲击失效模型

    Figure  10.  Impact failure models of jute fiber/PP composites before and after n-SiO2 deposition

    图  11  裂纹在n-SiO2界面相发生偏转的示意图

    Figure  11.  Schematic of propagation direction of the crack at n-SiO2 interphase

    图  12  n-SiO2@黄麻纤维/PP复合材料的冲击断口形貌

    Figure  12.  Fracture morphology of n-SiO2@jute fiber/PP composites

    图  13  n-SiO2@黄麻纤维/PP复合材料多相、多层次界面的冲击失效模型

    Figure  13.  Impact fracture model of the multi-phase and multi-layer interfaces for n-SiO2@jute fiber/PP composites

    表  1  纤维素Iβ的晶胞参数[14]

    Table  1.   Lattice parameters of cellulose Iβ[14]

    Group
    Length/nmAngle/(°)
    abcαβγ
    P210.7780.8211.038909096.55
    下载: 导出CSV
  • [1] 王春红, 鹿超, 贾瑞婷, 等. 洋麻纤维-棉纤维混纺织物/环氧树脂复合材料力学及吸湿性能[J]. 复合材料学报, 2020, 37(7):1581-1589.

    WANG Chunhong, LU Chao, JIA Ruiting, et al. Moisture absorption and mechanical properties of kenaf fiber-cotton fiber blended fabric/epoxy composite[J]. Acta Materiae Compositae Sinica,2020,37(7):1581-1589(in Chinese).
    [2] DUTTA S D, KIM N K, DAS R, et al. Effects of sample orientation on the fire reaction properties of natural fibre composites[J]. Composites Part B: Engineering,2019,157:195-206. doi: 10.1016/j.compositesb.2018.08.118
    [3] 张安定, 马胜, 丁辛, 等. 黄麻纤维增强聚丙烯的力学性能[J]. 玻璃钢/复合材料, 2004(2):3-5.

    ZHANG Anding, MA Sheng, DING Xin, et al. Mechanical behaviors of jute fiber reinforced polypropylene compo-site[J]. Fiber Reinforced Plastics/Composites,2004(2):3-5(in Chinese).
    [4] 彭丹. 麻纤维增强聚丙烯的制作及其性能研究[D]. 武汉: 湖北工业大学, 2011.

    PENG Dan. Fabrication and property investigation of hemp fiber reinforced polypropylene composite[D]. Wuhan: Hubei University of Technology, 2011(in Chinese).
    [5] 张安定. 黄麻纤维增强聚丙烯的制作和性能研究[D]. 上海: 东华大学, 2004.

    ZHANG Anding. Fabrication and property investigation of jute fiber reinforced polypropylene composite[D]. Shanghai: Donghua University, 2004(in Chinese).
    [6] 倪爱清, 朱坤坤, 王继辉. 纳米SiO2-NaOH-有机硅烷偶联剂表面改性对苎麻纤维/乙烯基酯树脂复合材料性能的影响[J]. 复合材料学报, 2018, 36(11):2579-2586.

    NI Aiqing, ZHU Kunkun, WANG Jihui. Effects of nano SiO2-NaOH-silane coupling agent surface treatment on beha-vior of ramie fiber/vinyl ester resin composite[J]. Acta Materiae Compositae Sinica,2018,36(11):2579-2586(in Chinese).
    [7] SANJAY M R, MADHU P, JAWAID M, et al. Characterization and properties of natural fiber polymer composites: A comprehensive review[J]. Journal of Cleaner Production,2018,172:566-581. doi: 10.1016/j.jclepro.2017.10.101
    [8] 胥长龙, 卢德宏, 唐露, 等. 复合区体积分数对氧化锆增韧氧化铝颗粒/40Cr空间结构复合材料冲击磨损性能的影响[J]. 复合材料学报, 2020, 37(9):2223-2229.

    XU Changlong, LU Dehong, TANG Lu, et al. Effect of composite volume fraction on impact wear properties of zirconium oxide toughened alumina particles/40Cr architecture composites[J]. Acta Materiae Compositae Sinica,2020,37(9):2223-2229(in Chinese).
    [9] 刘新, 陈铎, 何辉永, 等. 热塑性颗粒-无机粒子协同增韧碳纤维增强环氧树脂复合材料[J]. 复合材料学报, 2020, 37(8):1904-1910.

    LIU Xin, CHEN Duo, HE Huiyong, et al. Synergistic toughening of thermoplastic particles-inorganic particles to carbon fiber reinforced epoxy resin composites[J]. Acta Materiae Compositae Sinica,2020,37(8):1904-1910(in Chinese).
    [10] KIM B, CHA S, KONG K, et al. Synergistic interfacial reinforcement of carbon fiber/polyamide 6 composites using carbon-nanotube-modified silane coating on ZnO-nanorod grown carbon fiber[J]. Composites Science and Technology,2018,165:362-372. doi: 10.1016/j.compscitech.2018.07.015
    [11] CHEON J, KIM M. Impact resistance and interlaminar shear strength enhancement of carbon fiber reinforced thermoplastic composites by introducing MWCNT-anchored carbon fiber[J]. Composites Part B: Engineering,2021,217:108872. doi: 10.1016/j.compositesb.2021.108872
    [12] WANG D, XUAN L, HAN G, et al. Preparation and characterization of foamed wheat straw fiber/polypropylene composites based on modified nano-TiO2 particles[J]. Composites Part A: Applied Science & Manufacturing,2020,128:105674.
    [13] 中国国家标准化管理委员会(标准制定单位). GB/T 1451—2005 增强塑料简支梁式冲击韧性试验方法[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. GB/T 1451—2005 Fiber-reinforced plastics compo-sites—Determination of charpy impact properties[S]. Beijing: China Standards Press, 2005(in Chinese).
    [14] HE L P, LI W J, CHEN D C, et al. Effects of amino silicone oil modification on properties of ramie fiber and ramie fiber/polypropylene composites[J]. Materials and Design,2015,77:142-148. doi: 10.1016/j.matdes.2015.03.051
    [15] KABIR M M, WANG H, LAU K T, et al. Effects of chemical treatments on hemp fibre structure[J]. Applied Surface Science,2013,276:13-23. doi: 10.1016/j.apsusc.2013.02.086
    [16] HE L P, LI W J, CHEN D C, et al. Microscopic mechanism of amino silicone oil modification and modification effect with different amino group contents based on molecular dynamics simulation[J]. Applied Surface Science,2018,440:331-340. doi: 10.1016/j.apsusc.2018.01.101
    [17] ADINUGRAHA M P, MARSENO D W, HARYADI. Synthesis and characterization of sodium carboxymethylcellulose from cavendish banana pseudo stem (Musa cavendishii LAMBERT)[J]. Carbohydrate Polymers,2005,62:164-169. doi: 10.1016/j.carbpol.2005.07.019
    [18] 乔丽君. 纤维素-二氧化硅纳米复合材料的分子动力学模拟研究[D]. 兰州: 西北师范大学, 2009.

    QIAO Lijun. Molecular dynamics simulations of cellulose/SiO2 nanocomposites[D]. Lanzhou: Northwest Normal University, 2009(in Chinese).
    [19] ZHOU Y, FAN M, CHEN L. Interface and bonding mechanisms of plant fibre composites: An overview[J]. Composites Part B: Engineering,2016,101:31-45. doi: 10.1016/j.compositesb.2016.06.055
    [20] 李文军. 苎麻纤维/聚丙烯车用复合材料的制备及改性机理研究[D]. 长沙: 湖南大学, 2017.

    LI Wenjun. Preparation and characterization of ramie fiber/polypropylene composites for automobile and study on the mechanism of fiber surface modification[D]. Changsha: Hunan University, 2017(in Chinese).
    [21] LIU X, CUI Y. Multi-scale analysis of the interface structure and failure behaviors for n-SiO2@jute fiber/PP composites[J]. Composite Structures,2021,267:113865. doi: 10.1016/j.compstruct.2021.113865
    [22] 殷跃洪. 黄麻纤维表面原位沉积纳米SiO2及PP基复合材料的研究[D]. 南京: 南京航空航天大学, 2017.

    YIN Yuehong. The research of in situ deposited nano-SiO2 on the surface of jute fiber and its polypropylene matrix composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017(in Chinese).
    [23] JIAO W W, ZHENG T L, LIU W B, et al. Molecular dynamics simulations of the effect of sizing agent on the interface property in carbon fiber reinforced vinyl ester resin composite[J]. Applied Surface Science,2019,479:1192-1199. doi: 10.1016/j.apsusc.2019.02.157
    [24] 陈生辉, 孙霜青, GWALTNEY S R, 等. 碳纳米纤维与环氧树脂单体相互作用的分子动力学模拟[J]. 高分子学报, 2015(10):1158-1164. doi: 10.11777/j.issn1000-3304.2015.15053

    CHEN Shenghui, SUN Shuangqing, GWALTNEY S R, et al. Molecular dynamics simulations of the interaction between carbon nanofiber and epoxy resin monomers[J]. Acta Polymerica Sinica,2015(10):1158-1164(in Chinese). doi: 10.11777/j.issn1000-3304.2015.15053
    [25] ZHANG T, XU Y, LI H, et al. Interfacial adhesion between carbon fibers and nylon 6: Effect of fiber surface chemistry and grafting of nano-SiO2[J]. Composites Part A: Applied Science & Manufacturing,2019,121:157-168.
    [26] LI Q, LI Y, ZHOU L, et al. Nanoscale evaluation of multi-layer interfacial mechanical properties of sisal fiber reinforced composites by nanoindentation technique[J]. Composites Science and Technology,2017,152:211-221.
    [27] BOS H L, MÜSSIG J, OEVER M J A V D. Mechanical properties of short-flax-fibre reinforced compounds[J]. Compo-sites Part A: Applied Science & Manufacturing,2006,37:1591-1604.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  753
  • HTML全文浏览量:  333
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-31
  • 修回日期:  2021-05-13
  • 录用日期:  2021-06-02
  • 网络出版日期:  2021-06-08
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回