留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大掺量自来水厂污泥粉对混凝土强度和微观结构的影响

汤薇 石锦炎 何智海 詹培敏 刘宝举 杨效登

汤薇, 石锦炎, 何智海, 等. 大掺量自来水厂污泥粉对混凝土强度和微观结构的影响[J]. 复合材料学报, 2022, 39(5): 2369-2377. doi: 10.13801/j.cnki.fhclxb.20210608.002
引用本文: 汤薇, 石锦炎, 何智海, 等. 大掺量自来水厂污泥粉对混凝土强度和微观结构的影响[J]. 复合材料学报, 2022, 39(5): 2369-2377. doi: 10.13801/j.cnki.fhclxb.20210608.002
TANG Wei, SHI Jinyan, HE Zhihai, et al. Influence of high-volume water treatment plant sludge powder on strength and microstructure of concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2369-2377. doi: 10.13801/j.cnki.fhclxb.20210608.002
Citation: TANG Wei, SHI Jinyan, HE Zhihai, et al. Influence of high-volume water treatment plant sludge powder on strength and microstructure of concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2369-2377. doi: 10.13801/j.cnki.fhclxb.20210608.002

大掺量自来水厂污泥粉对混凝土强度和微观结构的影响

doi: 10.13801/j.cnki.fhclxb.20210608.002
基金项目: 国家自然科学基金(51602198);浙江省自然科学基金(LY20E020006)
详细信息
    通讯作者:

    石锦炎,硕士,研究方向为土木工程材料  E-mail:jinyan.shi@csu.edu.cn

    何智海,博士后,副教授,研究方向为水泥基材料  E-mail:hezhihai@usx.edu.cn

  • 中图分类号: TU528

Influence of high-volume water treatment plant sludge powder on strength and microstructure of concrete

  • 摘要: 以煅烧后的自来水厂污泥粉 (CWTS) 取代部分水泥制备大掺量污泥粉混凝土,研究了大掺量 CWTS对于混凝土强度、孔结构和纳米力学性能的影响。结果表明:尽管大掺量CWTS不利于混凝土的28天抗压强度发展,但是20wt%和40wt%的CWTS能够增强混凝土的90天抗压强度;由于CWTS的火山灰活性和填充作用,掺有20wt%~40wt%CWTS的混凝土90天孔结构被明显细化,大于1 µm的孔隙含量明显减少;同时,从纳米尺度特征中观察到掺加20wt%CWTS能够明显降低基体中孔隙相和未水化相含量,并提高C—S—H相的体积分数,特别是高密度C—S—H相;此外,掺加20wt%的CWTS能够使界面过渡区(ITZ)宽度相对降低20%,并且掺加40wt%CWTS的实验组与对照组 (0wt%CWTS) 具有相似的ITZ宽度。由此可见,使用大掺量 (20wt%~40wt%) CWTS取代水泥制备混凝土,不仅具备较好的经济和环境效应,也有益于其90天力学性能和微结构的改善。

     

  • 图  1  水泥和CWTS粒径分布曲线

    Figure  1.  Particle size distribution of cement and CWTS

    图  2  纳米压痕混凝土试样的制备流程

    Figure  2.  Flow chart of nanoidentation concrete specimen preparation

    R—Roughness

    图  3  CWTS掺量对于混凝土抗压强度的影响

    Figure  3.  Effect of CWTS on compressive strength of concrete

    图  4  CWTS掺量对于混凝土孔结构的影响:(a) 累计孔隙率;(b) 不同尺寸孔隙的比例

    Figure  4.  Effect of CWTS on pore structure of concrete: (a) Cumulative porosity; (b) Proportion of different sizes of pores

    图  5  不同CWTS掺量试件中水泥基体的90天弹性模量

    Figure  5.  90-Days elastic modulus of cement matrix of sample with different CWTS content

    图  6  CWTS对水泥基体弹性模量频率分布的影响

    Figure  6.  Effect of CWTS on frequency distribution of elastic modulus of cement matrix

    MP—Micro-pores; LD—Low density; HD—High density; CH—Calcium hydroxide; UC—Unhydrated clinker

    图  7  CWTS对水泥基体各相体积分数的影响

    Figure  7.  Effect of CWTS on volume fractions of constituent phases of cement matrix

    图  8  不同CWTS掺量的试件界面过渡区 (ITZ) 的弹性模量分布云图

    Figure  8.  Contour map of elastic modulus distribution in interfacial transition zone (ITZ) of sample with different CWTS content

    图  9  不同CWTS 掺量的试件界面过渡区宽度分布

    Figure  9.  Widths of interface transition zone of sample with different CWTS content

    表  1  水泥和煅烧自来水厂污泥粉 (CWTS)的化学组成 (wt%)

    Table  1.   Chemical compositions of cement and calcined water treatment plant sludge powder (CWTS) (wt%)

    CaOSiO2Al2O3Fe2O3MgOSO3Na2OMnOK2OP2O5
    Cement57.3918.064.608.312.533.010.100.75
    CWTS1.1533.0944.513.110.460.285.251.450.77
    下载: 导出CSV

    表  2  混凝土配合比

    Table  2.   Mix proportions of concrete

    Sample numberMass fraction
    of CWTS/wt%
    Mix proportion/(kg·m−3)
    CementCWTSSandCoarse aggregateWaterSuper plasticizer
    C-0%CWTS 0 540 0 715 1040 162 9.8
    C-20%CWTS 20 432 108 715 1040 162 10.7
    C-40%CWTS 40 324 216 715 1040 162 13.4
    C-60%CWTS 60 216 324 715 1040 162 15.2
    下载: 导出CSV
  • [1] BONTON A, BOUCHARD C, BARBEAU B, et al. Comparative life cycle assessment of water treatment plants[J]. Desalination,2012,284:42-54. doi: 10.1016/j.desal.2011.08.035
    [2] PATEL H, PANDEY S. Evaluation of physical stability and leachability of portland pozzolona cement (PPC) solidified chemical sludge generated from textile wastewater treatment plants[J]. Journal of Hazardous Materials,2012(207/208):56-64. doi: 10.1016/j.jhazmat.2011.05.028
    [3] WEI L, ZHU F, LI Q, et al. Development, current state and future trends of sludge management in China: Based on exploratory data and CO2-equivaient emissions analysis[J]. Environment International,2020,144:106093. doi: 10.1016/j.envint.2020.106093
    [4] BUREK J, DARIN N. Life cycle assessment of grocery, perishable, and general merchandise multi-facility distribution center networks[J]. Energy Build, 2018, 174(1): 388-401.
    [5] 李升涛, 陈徐东, 张伟, 等. 基于长江下游超细疏浚砂的碱激发矿渣混凝土力学性能[J]. 复合材料学报, 2022, 39(1): 335-343.

    LI Shengtao, CHEN Xudong, ZHANG Wei, et al. Mecha-nical properties of alkali activated slag concrete with ultra fine dredged sand from Yangtze river[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 335-343(in Chinese).
    [6] BENLALLA A, ELMOUSSAOUITI M, DAHHOU M, et al. Utili-zation of water treatment plant sludge in structural ceramics bricks[J]. Applied Clay Science, 2015, 118: 171‒177.
    [7] WOLFF E, SCHWABE W K, CONCEICAO S V. Utilization of water treatment plant sludge in structural ceramics[J]. Journal of Cleaner Production,2015,96:282‒289.
    [8] TEIXEIRA S R, SANTOS G T A, SOUZA A E, et al. The effect of incorporation of a Brazilian water treatment plant sludge on the properties of ceramic materials[J]. Applied Clay Science,2011,53(4):561-565. doi: 10.1016/j.clay.2011.05.004
    [9] CREMADES L V, CUSIDO J A, ARTEAGA F. Recycling of sludge from drinking water treatment as ceramic material for the manufacture of tiles[J]. Journal of Cleaner Production,2018,201:1071‒1080.
    [10] SCRIVENER K, JOHN V M, GARTNER E M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry[J]. Cement and Concrete Research,2018,114:2‒26.
    [11] SHI J, LIU B, HE Z, et al. A green ultra-lightweight chemi-cally foamed concrete for building exterior: A feasibility study[J]. Journal of Cleaner Production,2020,288:125085.
    [12] GOMES S D C, ZHOU J L, LI W, et al. Recycling of raw water treatment sludge in cementitious composites: Effects on heat evolution, compressive strength and microstructure[J]. Resources, Conservation and Recycling,2020,161:104970. doi: 10.1016/j.resconrec.2020.104970
    [13] GODOY L G G D, ROHDEN A B, GARCEZ M R, et al. Valori-zation of water treatment sludge waste by application as supplementary cementitious material[J]. Construction and Building Materials,2019,223:939‒950.
    [14] GOMES S D C, ZHOU J L, LI W, et al. Progress in manufacture and properties of construction materials incorporating water treatment sludge: A review[J]. Resources, Conservation and Recycling,2019,145:148-159. doi: 10.1016/j.resconrec.2019.02.032
    [15] AHMAD T, AHMAD K, ALAM M. Investigating calcined filter backwash solids as supplementary cementitious material for recycling in construction practices[J]. Construction and Building Materials,2020,175:664-671.
    [16] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture and Building Press, 2019(in Chinese).
    [17] HE Z H, ZHAN P M, DU S G, et al. Creep behavior of concrete containing glass powder[J]. Composites Part B: Engineering,2019,166:13-20. doi: 10.1016/j.compositesb.2018.11.133
    [18] QIN Z, ZHOU S, MA C, et al. Roles of metakaolin in magnesium phosphate cement: Effect of the replacement ratio of magnesia by metakaolin with different particle sizes[J]. Construction and Building Materials,2019,227:116675. doi: 10.1016/j.conbuildmat.2019.116675
    [19] HE Z H, DU S G, CHEN D. Microstructure of ultra high performance concrete containing lithium slag[J]. Journal of Hazardous Materials,2018,353:35‒43.
    [20] 刘巧玲, 李汉彩, 彭玉娇, 等. 多壁碳纳米管增强水泥基复合材料的纳米力学性能[J]. 复合材料学报, 2020, 37(4):952-961.

    LIU Qiaolin, LI Hancai, PENG Yujiao, et al. Nanomecgani-cal properties of multi-wall carbon nanotubes/cementitious composites[J]. Acta Materiae Compositae Sinica,2020,37(4):952-961(in Chinese).
    [21] WANG X, DONG S, LI Z, et al. Nanomechanical characte-ristics of interfacial transition zone in nano-engineered concrete[J/OL]. Engineering, 2021, https://doi.org/10.1016/j.eng.2020.08.025.
    [22] MAIERDAN Y, HAQUE M A, CHEN B, et al. Recycling of waste river sludge into unfired green bricks stabilized by a combination of phosphogypsum, slag and cement[J]. Construction and Building Materials,2020,260:120666. doi: 10.1016/j.conbuildmat.2020.120666
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  645
  • HTML全文浏览量:  316
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 修回日期:  2021-05-28
  • 录用日期:  2021-05-28
  • 网络出版日期:  2021-06-08
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回