留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池富镍正极材料基础科学问题:表面残锂及其去除

王鑫 陈欣 任莉 王硕 罗宏基 张军 吕根品 向伟

王鑫, 陈欣, 任莉, 等. 锂离子电池富镍正极材料基础科学问题:表面残锂及其去除[J]. 复合材料学报, 2022, 39(1): 97-110. doi: 10.13801/j.cnki.fhclxb.20210608.001
引用本文: 王鑫, 陈欣, 任莉, 等. 锂离子电池富镍正极材料基础科学问题:表面残锂及其去除[J]. 复合材料学报, 2022, 39(1): 97-110. doi: 10.13801/j.cnki.fhclxb.20210608.001
WANG Xin, CHEN Xin, REN Li, et al. Basic scientific problems of Ni rich cathode materials for Li-ion battery: Surface residual Li and its removal[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 97-110. doi: 10.13801/j.cnki.fhclxb.20210608.001
Citation: WANG Xin, CHEN Xin, REN Li, et al. Basic scientific problems of Ni rich cathode materials for Li-ion battery: Surface residual Li and its removal[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 97-110. doi: 10.13801/j.cnki.fhclxb.20210608.001

锂离子电池富镍正极材料基础科学问题:表面残锂及其去除

doi: 10.13801/j.cnki.fhclxb.20210608.001
基金项目: 国家自然科学基金(21805018);四川省科技厅应用基础研究项目(2020YJ0134)
详细信息
    通讯作者:

    向伟,博士,副教授,硕士生导师,研究方向为锂离子电池富镍正极材料, E-mail: xiangwei@cdut.edu.cn

  • 中图分类号: TM912

Basic scientific problems of Ni rich cathode materials for Li-ion battery: Surface residual Li and its removal

  • 摘要: 层状富Ni正极材料具有高可逆容量、低自放电性能和低成本优势,被认为是最有潜力的Li+电池正极材料。然而,材料结构不稳定、容量衰退和安全性差等问题,阻碍了富Ni正极材料的实际应用。当Ni含量大于80%时,富镍正极易与空气中的水分和CO2反应,在材料表面生成Li2CO3、LiHCO3、LiOH等残Li化合物。残Li存在不仅导致材料不稳定和电化学性能衰退,还造成电池安全问题。本文首先综述了残Li化合物的形成机制及其危害,再探讨了水洗过程中的水洗温度、时间、干燥温度等因素对材料性能的影响,并阐述了水洗造成结构衰退和容量衰减的机制。此外,还论述了其他去除残Li化合物的方法,特别是无水洗表面包覆的方法在去除残Li化合物影响方面呈现出巨大应用潜力。

     

  • 图  1  碱性溶液中PVDF降解反应示意图[43]

    Figure  1.  Schematic diagram for the degradation of PVDF in alkaline solution[43]

    图  2  未处理和包覆Li2CO3、LiF涂层LiNi0.8Co0.1Mn0.1O2的首周放电容量 (a) 和200周循环性能 (b)[49]、碳酸锂对富镍正极首周充放电过程相转变的影响 (c)[50]、富镍正极材料产生气体机制 (d)[34]

    Figure  2.  Fresh, Li2CO3-coated and LiF-coated LiNi0.8Co0.1Mn0.1O2 first cycle discharge capacity (a) , the cycle performance during 200 cycles (b)[49], effects of Li2CO3 on the phase transition of Ni-rich cathode during first cycle (c)[50]and gas generation mechanism of nickel-rich cathode materials (d)[34]

    图  3  水洗时间为0 min (a)、5 min (b)、15 min (c) 及30 min (d) 的LiNi0.83Co0.13Mn0.04O2的SEM图像[60];不同水洗时间的LiNi0.83Co0.13Mn0.04O2的XRD图谱 (e) 和循环50次的容量保持率 (f)[60]

    Figure  3.  SEM images of LiNi0.83Co0.13Mn0.04O2 cathode after different washing time: 0 min (a), 5 min (b), 15 min (c) and 30 min (d)[60]; Powder XRD patterns (e) and capacity retention after 50 cycles for LiNi0.83Co0.13Mn0.04O2 after different washing time (f)[60]

    图  4  未水洗 (a) 和材料与水比值为1 ∶ 0.7 (b)、1 ∶ 1 (c)、1 ∶ 2 (d) 1 ∶ 2及1 ∶ 5 (e) 的水洗涤后LiNi0.80Co0.15Mn0.05O2的SEM图像[23];未水洗和水洗后材料的循环性能 (f)[23];残锂量和容量保持率与洗涤用水量的关系 (g)[23];未水洗和经不同洗涤次数的LiNi0.83Co0.15Al0.02O2的充放电容量曲线 (h)[61]

    Figure  4.  SEM images of fresh (a) and washed LiNi0.80Co0.15Mn0.05O2 with ratio of material to water fixed about 1 ∶ 0.7 (b), 1 ∶ 1 (c), 1 ∶ 2 (d) and 1 ∶ 5 (e) [23]; Cycling performance of fresh and washed materials (f)[23]; Relationship between the residual lithium amount and capacity retention rate and the amount of water used for washing (g)[23]; Charge-discharge capacity curve of fresh and washed LiNi0.83Co0.15Al0.02O2 with different washing times (h)[61]

    图  5  未处理 (a) 和水洗后不同干燥温度80 ℃ (b)、120 ℃ (c) 和190 ℃ (d) 材料的SEM图像[23];TGA-MS分析未处理和水洗两次LiNi0.85Co0.1Mn0.05O2随温度升高的质量损失和气体释放 (e)[62]

    Figure  5.  SEM images of fresh material (a) and washed and dried at 80 ℃ (b), 120 ℃ (c) and 190 ℃ (d) [23]; TGA-MS analysis of the mass loss and gas release of fresh and two times washed LiNi0.85Co0.1Mn0.05O2 (e)[62]

    图  6  未处理 ((a), (b)) 和水洗 ((c), (d)) 后富镍正极材料在空气中储存30天后SEM和TEM图像[63];在空气中储存7天 ((e), (f)) 和30天 ((g), (h)) 未处理和水洗材料在不同倍率下充放电曲线[63]

    Figure  6.  SEM and TEM images of fresh ((a), (b)) and washed ((c), (d)) nickel-rich cathode materials after storage in air for 30 days[63]; Charge and discharge curves of fresh and washed materials stored in air for 7 days ((e), (f)) and 30 days ((g), (h)) at different rates[63]

    FFT—Fast Fourier transform

    图  7  未处理 (a) 和水洗后二次煅烧热处理 (b) LiNi0.88Co0.11Al0.01O2第300周电化学阻抗谱和等效电路[14];未处理和水洗后二次煅烧热处理LiNi0.88Co0.11Al0.01O2的循环性能 (c)[14];水洗和热处理结构变化的示意简图 ((d)~(f))[14]

    Figure  7.  Electrochemical impedance spectra and the equivalent circuits of fresh (a) and secondary calcination treated (b) LiNi0.88Co0.11Al0.01O2 at 300th cycle[14]; Cycling performance of fresh and secondary calcination treated LiNi0.88Co0.11Al0.01O2 (c)[14]; Schematic illustration of structural changes during washing and heat treatment ((d)-(f))[14]

    Re, Rs and Rct—Resistance of liquid electrolyte, resistance of solid electrolyte interphase film and charge transfer resistance, respectively; L1—Warburg impedance connected with the lithium ions diffusion through the solid particles

    图  8  (a)水洗富Ni正极滤液pH随水洗时间变化(NCA:LiNi0.83Co0.15Al0.02O2,NCM523PC:多晶LiNi0.5Co0.2Mn0.3O2,NCM523SC:单晶LiNi0.5Co0.2Mn0.3O2)[64];(b)两次独立测量未处理和水洗后不同温度干燥的富Ni正极的平均阻抗,误差线表示两次测量的最小值/最大值[62];(c)循环前后放电过程中Li嵌入的示意图[14]

    Figure  8.  (a) Changes of pH for the filtrate obtained at different washing time (NCA: LiNi0.83Co0.15Al0.02O2, NCM523 PC: Polycrystalline LiNi0.5Co0.2Mn0.3O2, NCM523 SC: single-crystalline LiNi0.5Co0.2Mn0.3O2)[64]; (b) Average impedance from two independent measurements for fresh and washed and dried Ni-rich cathode, the error bars indicate the minimum/maximum of two measurements[62]; (c) Schematic illustration of the Li intercalation during the discharge process before/after cycle[14]

    表  1  不同水洗温度下材料的Li、Ni、Co和Al含量变化[58]

    Table  1.   Changes in the content of Li, Ni, Co and Al under different washing temperature[58]

    Washing temperature/℃Li/wt%Ni/wt%Co/wt%Al/wt%
    Fresh 7.28 48.83 9.16 1.38
    5 7.23 48.87 9.19 1.40
    15 7.21 48.88 9.18 1.39
    25 7.16 48.92 9.20 1.41
    35 7.08 48.99 9.22 1.41
    45 6.92 49.14 9.31 1.42
    下载: 导出CSV

    表  2  不同水洗时间样品的晶胞结构参数及I(003)/I(104)[60]

    Table  2.   Unit cell structure parameters and I(003)/I(104) values of samples with different washing time[60]

    Washing time/mina/nmc/nmc/aI(003)/I(104)
    Fresh 0.2874 1.4206 4.943 1.14
    5 0.2872 1.4203 4.945 1.21
    15 0.2872 1.4204 4.946 1.17
    30 0.2873 1.4208 4.945 1.15
    Notes: a, c—Lattice parameters of the crystal; c/a—Ratio of c to a; I(003)/I(104)—Intensity ratio of (003) to (104) peaks in XRD.
    下载: 导出CSV

    表  3  未处理以及水洗干燥LiNi0.80Co0.15Mn0.05O2中的总残Li量[23]

    Table  3.   Total amount of residual Li of fresh and washed and dried LiNi0.80Co0.15Mn0.05O2[23]

    Drying
    temperature/℃
    Total amount of
    residual lithium/10−6
    Fresh 2319
    80 1203
    120 1130
    190 916
    下载: 导出CSV

    表  4  未处理和经水洗干燥的LiNi0.85Co0.1Mn0.05O2在石墨全电池的电化学性能[62]

    Table  4.   Electrochemical performance of fresh and washed and dried LiNi0.85Co0.1Mn0.05O2 in full battery with graphite anode[62]

    Drying temperature/℃Discharge capacity of 0.1C
    cycle 2 times/(mA·h·g−1)
    Discharge capacity
    loss of 0.1 C to 1 C/%
    Discharge capacity
    loss after 198 cycles of 1 C/%
    Fresh 188 5 12
    80 178 11 20
    180 175 16 25
    300 130 31 92
    下载: 导出CSV
  • [1] KIM U H, KIM J H, HWANG J Y, et al. Compositionally and structurally redesigned high-energy Ni-rich layered cathode for next-generation lithium batteries[J]. Materials Today,2018,23:26-36.
    [2] ZHENG Jianming, YAN Pengfei, ESTEVEZ Luis, et al. Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries[J]. Nano Energy,2018,49:538-548. doi: 10.1016/j.nanoen.2018.04.077
    [3] HOU Peiyu, YIN Jiangmei, DING Meng, et al. Surface/Interfacial structure and chemistry of high-energy nickel-rich layered oxide cathodes: advances and perspectives[J]. Small,2017,13(45):1-29.
    [4] SARI H M K, LI X F. Controllable cathode-electrolyte interface of LiNi0.8Co0.1Mn0.1O2 for lithium ion batteries: A review[J]. Advanced Energy Materials,2019,9(39):1-31.
    [5] ZHAO Wengao, ZHENG Jianming, ZOU Lianfeng, et al. High voltage operation of Ni-rich NMC cathodes enabled by stable electrode/electrolyte interphases[J]. Advanced Energy Materials,2018,8(19):1-9.
    [6] VILLEVIEILLE Claire, LANZ Patrick, BUNZLI Christa, et al. Bulk and surface analyses of ageing of a 5V-NCM positive electrode material for lithium-ion batteries[J]. Journal of Materials Chemistry A,2014,2:6488-6493. doi: 10.1039/c3ta13112b
    [7] RYU H H, PARK K J, YOON D R, et al. Li[Ni0.9Co0.09W0.01]O2: A new type of layered oxide cathode with high cycling stability[J]. Advanced Energy Materials,2019,9(44):1-7.
    [8] HASHEM A M A, ABDEL-GHANY A E, EID A E, et al. Study of the surface modification of LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion battery[J]. Journal of Power Sources,2011,196(20):8632-8637. doi: 10.1016/j.jpowsour.2011.06.039
    [9] ZHANG Shu, MA Jun, HU Zhenglin, et al. Identifying and Addressing Critical Challenges of High-Voltage Layered Ternary Oxide Cathode Materials[J]. Chemistry of Materials,2019,31(16):6033-6065. doi: 10.1021/acs.chemmater.9b01557
    [10] SUN Y K, KIM D H, YOON C S, et al. A novel cathode material with a concentration-gradient for high-energy and safe lithium-ion batteries[J]. Advanced Functional Materials,2010,20(3):485-491. doi: 10.1002/adfm.200901730
    [11] DU Rui, BI Yujing, YANG Wenchao, et al. Improved cyclic stability of LiNi0.8Co0.1Mn0.1O2 via Ti substitution with a cut-off potential of 4.5 V[J]. Ceramics International, 2015, 41(5): 7133-7139.
    [12] LU Chao, WU Hao, CHEN Baojun, et al. Improving the electrochemical properties of Li1.2Mn0.52Co0.08Ni0.2O2 cathode material by uniform surface nanocoating with samarium fluoride through depositional-hydrothermal route[J]. Journal of Alloys and Compounds,2015,634:75-82. doi: 10.1016/j.jallcom.2015.02.056
    [13] PAN C C, BANKS C E, SONG W X, et al. Recent development of LiNixCoyMnzO2: Impact of micro/nano structures for imparting improvements in lithium batteries[J]. Transactions of Nonferrous Metals Society of China,2013,23(1):108-119. doi: 10.1016/S1003-6326(13)62436-X
    [14] LEE Wontae, LEE Donghyun, KIM Yunok, et al. Enhancing the structural durability of Ni-rich layered materials by post-process: washing and heat-treatment[J]. Journal of Materials Chemistry A,2020,8(20):10206-10216. doi: 10.1039/D0TA01083A
    [15] LEE M J, NOH MJ, PARK M H, et al. The role of nanoscale-range vanadium treatment in LiNi0.8Co0.15Al0.05O2 cathode materials for Li-ion batteries at elevated temperatures[J]. Journal of Materials Chemistry A,2015,3(25):13453-13460. doi: 10.1039/C5TA01571E
    [16] KIM Junhyeok, LEE Hyomyung, CHA Hyungyeon, et al. Prospect and reality of Ni-rich cathode for commercialization[J]. Advanced Energy Materials,2017,8(6):1-25.
    [17] XIONG Xunhui, DING Dong, BU Yunfei, et al. Enhanced electrochemical properties of a LiNiO2-based cathode material by removing lithium residues with (NH4)2HPO4[J]. Journal of Materials Chemistry A,2014,2(30):11691-11696. doi: 10.1039/C4TA01282H
    [18] DING Yu, LIU Zhi, HUANG Mengke, et al. Depth-aware saliency detection using convolutional neural networks[J]. Journal of Visual Communication and Image Representation,2019,61:1-9. doi: 10.1016/j.jvcir.2019.03.019
    [19] DAI Hongliu, XI Kai, LIU Xin, et al. Cationic surfactant-based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms[J]. Journal of the American Chemical society, 2018, 140(50): 17515-17521.
    [20] CHEN Shi, HE Tao, SU Yuefeng, et al. Ni-rich LiNi0.8Co0.1Mn0.1O2 oxide coated by dual-conductive layers as high performance cathode for lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2017,9(35):29732-29743.
    [21] QIAN Kun, HUANG Binhua, LIU Yuxiu, et al. Increase and discretization of the energy barrier for individual LiNixCoyMnyO2 (x+2y=1) particles with the growth of a Li2CO3 surface film[J]. Journal of Materials Chemistry A,2019,7(20):12723-12731. doi: 10.1039/C9TA01443H
    [22] ZHENG Xiaobo, LI Xinhai, WANG Zhixing, et al. Investigation and improvement on the electrochemical performance and storage characteristics of LiNiO2-based materials for lithium ion battery[J]. Electrochimica Acta,2016,191:832-840. doi: 10.1016/j.electacta.2016.01.142
    [23] PARK J H, CHOI B J, KANG Y S, et al. Effect of residual lithium rearrangement on Ni-rich layered oxide cathodes for lithium-ion batteries[J]. Energy Technology,2018,6(7):1361-1369. doi: 10.1002/ente.201700950
    [24] CHO D H, JO C H, CHO W S, et al. Effect of residual lithium compounds on layer Ni-rich LiNi0.7Mn0.3O2[J]. Journal of the Electrochemical Society,2014,161(6):A920-A926. doi: 10.1149/2.042406jes
    [25] ZHANG Mingjian, HU Xiaobing, LI Maofan, et al. Cooling induced surface reconstruction during synthesis of high-Ni layered oxides[J]. Advanced Energy Materials,2019,9(43):1-10.
    [26] MARTINEZ A C, GRUGEON S, CAILLEU D, et al. High reactivity of the nickel-rich LiNi1-x-yMnxCoyO2 layered materials surface towards H2O/CO2 atmosphere and LiPF6-based electrolyte[J]. Journal of Power Sources,2020:468.
    [27] BICHON Marie, SOTTA Dane, DUPRE Nicolas, et al. Study of immersion of LiNi0.5Mn0.3Co0.2O2 material in water for aqueous processing of positive electrode for Li-ion batteries[J]. ACS Applied Materials & Interfaces,2019,11(20):18331-18341.
    [28] LIU H S, ZHANG Z R, GONG Z L, et al. Origin of deterioration for LiNiO2 cathode material during storage in air[J]. Electrochemical and Solid-State Letters,2004,7(7):A190-A193. doi: 10.1149/1.1738471
    [29] LIU Hansan, YANG Yong, ZHANG Jiujun. Investigation and improvement on the storage property of LiNi0.8Co0.2O2 as a cathode material for lithium-ion batteries[J]. Journal of Power Sources,2006,162(1):644-650. doi: 10.1016/j.jpowsour.2006.07.028
    [30] LIU Hansan, YANG Yong, ZHANG Jiujun. Reaction mechanism and kinetics of lithium ion battery cathode material LiNiO2 with CO2[J]. Journal of Power Sources,2007,173(1):556-561. doi: 10.1016/j.jpowsour.2007.04.083
    [31] MIJUNG Noh, LEE Youngil, CHO Jaephil. Water adsorption and storage characteristics of optimized LiCoO2 and LiNi1/3Co1/3Mn1/3O2 composite cathode material for Li-Ion cells[J]. Journal of The Electrochemical Society,2006,153(5):A935-A940. doi: 10.1149/1.2186041
    [32] EOM Junho, KIM Mingyu, CHO Jaephil. Storage characteristics of LiNi0.8Co0.1+xMn0.1−xO2 (x=0, 0.03, and 0.06) cathode materials for lithium batteries[J]. Journal of the Electrochemical Society, 2008, 155(3): A239-A245.
    [33] FAENZA N V, BRUCE L, LEBENS-HIGGINS Z W, et al. Growth of ambient induced surface impurity species on layered positive electrode materials and impact on electrochemical performance[J]. Journal of the Electrochemical Society,2017,164(14):A3727-A3741. doi: 10.1149/2.0921714jes
    [34] HATSUKADE Toru, SCHIELE Alexander, HARTMANN Pascal, et al. The origin of carbon dioxide evolved during cycling of nickel-rich layered NCM cathodes[J]. ACS Applied Materials & Interfaces,2018,10(45):38892-38899.
    [35] SHKROB I A, GILBERT J A, PHILLIPS P J, et al. Chemical weathering of layered Ni-rich oxide electrode materials: Evidence for cation exchange[J]. Journal of the Electrochemical Society,2017,164(7):A1489-A1498. doi: 10.1149/2.0861707jes
    [36] TOMA Takahiro, MAEZONO Ryo, HONGO Kenta. Electrochemical properties and crystal structure of Li+/H+ cation-exchanged LiNiO2[J]. ACS Applied Energy Materials,2020,3(4):4078-4087. doi: 10.1021/acsaem.0c00602
    [37] SU Yuefeng, CHEN Gang, CHEN Lai, et al. Clean the Ni-rich cathode material surface with boric acid to improve its storage performance[J]. Frontiers in Chemistry,2020,8:1-11. doi: 10.3389/fchem.2020.00001
    [38] TASAKI Ken, GOLDBERG Alex, LIAN Jianjie, et al. Solubility of lithium salts formed on the lithium-ion battery negative electrode surface in organic solvents[J]. Journal of the Electrochemical Society,2009,156(12):A1019-A1027. doi: 10.1149/1.3239850
    [39] ROSS G J, WATTS J F, HILL M P, et al. Surface modification of poly (vinylidene fluoride) by alkaline treatment Part 2. Process modification by the use of phase transfer catalysts[J]. Polymer,2001,42(2):403-413. doi: 10.1016/S0032-3861(00)00328-1
    [40] MARCHANDBRYNAERT J, JONGEN N, DEWEZ J L. Surface hydroxylation of poly (vinylidene fluoride) (PVDF) film[J]. Polymer Chemistry,1997,35(7):1227-1235. doi: 10.1002/(SICI)1099-0518(199705)35:7<1227::AID-POLA8>3.0.CO;2-Z
    [41] LOGINOVA N N, MADORSKAYA L Y, PODLESSKAYA N K. Relations between the thermal stability of partially fluorinated polymers and their structure[J]. Polymer Science USSR,1983,25(12):2995-3000. doi: 10.1016/0032-3950(83)90052-7
    [42] ROSS G J, WATTS J F, HILL M P, et al. Surface modification of poly(vinylidene fluoride) by alkaline treatment 1. The degradation mechanism[J]. Polymer,2000,41(5):1685-1696. doi: 10.1016/S0032-3861(99)00343-2
    [43] SEONG Wonmo, KIM Youngjin, MANTHIRAM Arumugam. Impact of residual lithium on the adoption of high-nickel layered oxide cathodes for lithium-ion batteries[J]. Chemistry of Materials,2020,32(22):9479-9489. doi: 10.1021/acs.chemmater.0c02808
    [44] KIM Youngjin, PARK Hyoju, WARNER J H, et al. Unraveling the intricacies of residual lithium in high-Ni Cathodes for lithium-ion batteries[J]. ACS Energy Letters,2021,6(3):941-948. doi: 10.1021/acsenergylett.1c00086
    [45] HE Tao, LU Yun, SU Yuefeng, et al. Sufficient utilization of zirconium ions to improve the structure and surface properties of nickel-rich cathode materials for lithium-ion batteries[J]. Chemsuschem,2018,11(10):1639-1648. doi: 10.1002/cssc.201702451
    [46] SEONG W M, CHO K H, PARK J W, et al. Controlling residual lithium in high-nickel (>90%) lithium layered oxides for cathodes in lithium-ion batteries[J]. Angewandte Chemie-International Edition, 2020, 59(42): 18662-18669.
    [47] KIM T H, ONO L K., FLECK N, et al. Transition metal speciation as a degradation mechanism with the formation of a solid-electrolyte interphase (SEI) in Ni-rich transition metal oxide cathodes[J]. Journal of Materials Chemistry A,2018,6(29):14449-14463. doi: 10.1039/C8TA02622J
    [48] CHEN Anqi, WANG Kun, LI Jiaojiao, et al. The formation, detriment and solution of residual lithium compounds on Ni-rich layered oxides in lithium-ion batteries[J]. Frontiers in Energy Research,2020,8:1-16. doi: 10.3389/fenrg.2020.00001
    [49] BI Yujing, WANG Tao, LIU Meng, et al. Stability of Li2CO3 in cathode of lithium ion battery and its influence on electrochemical performance[J]. RSC Advances,2016,6(23):19233-19237. doi: 10.1039/C6RA00648E
    [50] GRENIER A, LIU H, WIADEREK K M., et al. Reaction heterogeneity in LiNi0.8Co0.15Al0.05O2 induced by surface layer[J]. Chemistry of Materials,2017,29(17):7345-7352. doi: 10.1021/acs.chemmater.7b02236
    [51] RENFREW S E, MCCLOSKEY B D. Residual lithium carbonate predominantly accounts for first cycle CO2 and CO outgassing of Li-stoichiometric and Li-rich layered transition-metal oxides[J]. Journal of the American Chemical Society,2017,139(49):17853-17860. doi: 10.1021/jacs.7b08461
    [52] SHARIFI-ASL Soroosh, LU Jun, AMINE Khalil, et al. Oxygen release degradation in Li-ion battery cathode materials: Mechanisms and mitigating approaches[J]. Advanced Energy Materials,2019,9(22):1900551. doi: 10.1002/aenm.201900551
    [53] KIM Yongseon. Mechanism of gas evolution from the cathode of lithium-ion batteries at the initial stage of high-temperature storage[J]. Journal of Materials Science,2013,48(24):8547-8551. doi: 10.1007/s10853-013-7673-2
    [54] KIM Yongseon. Investigation of the gas evolution in lithium ion batteries: Effect of free lithium compounds in cathode materials[J]. Journal of Solid State Electrochemistry, 2013, 17(7): 1961-1965.
    [55] LUO Kun, ROBERTS Matthew R., HAO Rong, et al. Charge-compensation in 3D-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen[J]. Nature Chemistry,2016,8(7):684-691. doi: 10.1038/nchem.2471
    [56] JUNG Roland, METZGER Michael, MAGLIA Filippo, et al. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries[J]. Journal of the Electrochemical Society,2017,164(7):A1361-A1377. doi: 10.1149/2.0021707jes
    [57] JUNG Roland, MORASCH Robert, KARAYAYLALI Pinar, et al. Effect of ambient storage on the degradation of Ni-rich positive electrode materials (NMC811) for Li-ion batteries[J]. Journal of the Electrochemical Society,2018,165(2):A132-A141. doi: 10.1149/2.0401802jes
    [58] 刘万民. 锂离子电池LiNi0.8Co0.15Al0.05O2正极材料的合成、改性及储存性能研究[D]. 长沙: 中南大学, 2012.

    LIU Wanmin. Synthesis, modification and storage research of LiNi0.8Co0.15Al0.05O2 cathode materials for lithium ion batteries[D]. Changsha: Central South University, 2012(in Chinese).
    [59] XIAO Lifen, YANG Yanyan, ZHAO Yanqiang, et al. Synthesis and electrochemical properties of submicron LiNi0.8Co0.2O2 by a polymer-pyrolysis method[J]. Electrochimica Acta,2008,53(6):3007-3012. doi: 10.1016/j.electacta.2007.11.013
    [60] XU Shiguo, WANG Xingning, ZHANG Wenyan, et al. The effects of washing on LiNi0.83Co0.13Mn0.04O2 cathode materials[J]. Solid State Ionics,2019,334:105-110. doi: 10.1016/j.ssi.2019.01.037
    [61] KIM Jisuk, HONG Youngsik, RYU Kwang Sun, et al. Washing effect of a LiNi0.83Co0.15Al0.02O2 cathode in water[J]. Electrochemical and Solid-State Letters,2006,9(1):A19-A23. doi: 10.1149/1.2135427
    [62] PRITZL D, TEUFL T, FREIBERG A T S, et al. Washing of nickel-rich cathode materials for lithium-ion batteries: Towards a mechanistic understanding[J]. Journal of the Electrochemical Society,2019,166(16):A4056-A4066. doi: 10.1149/2.1351915jes
    [63] XIONG Xunhui, WANG Zhixing, YUE Peng, et al. Washing effects on electrochemical performance and storage characteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries[J]. Journal of Power Sources,2013,222:318-325. doi: 10.1016/j.jpowsour.2012.08.029
    [64] HAMAM Ines, ZHANG Ning, LIU Aaron, et al. Study of the reactions between Ni-rich positive electrode materials and aqueous solutions and their relation to the failure of Li-ion cells[J]. Journal of the Electrochemical Society,2020,167(13):130521.
    [65] PAN Junqing, SUN Yanzhi, WAN Pingyu, et al. Synthesis, characterization and electrochemical performance of battery grade NiOOH[J]. Electrochemistry Communications,2005,7(8):857-862. doi: 10.1016/j.elecom.2005.05.004
    [66] LI J, CHEN B R, ZHOU H M. Effects of washing and heat-treatment on structure and electrochemical charge/discharge property of LiNi0.8Co0.15Al0.05O2 Powder[J]. Journal of Inorganic Materials,2016,31(7):773-778. doi: 10.15541/jim20150644
    [67] HUANG X, DUAN J, HE J, et al. Ions transfer behavior during water washing for LiNi0.815Co0.15Al0.035O2: Role of excess lithium[J]. Materials Today Energy,2020,17:100440.
    [68] PARK K J, HWANG J Y, RYU H H, et al. Degradation mechanism of Ni-enriched NCA cathode for lithium batteries: Are microcracks really critical[J]. ACS Energy Letters,2019,4(6):1394-1400. doi: 10.1021/acsenergylett.9b00733
    [69] LIU Wanmin, QIN Mulan, XU Lü, et al. Washing effect on properties of LiNi0.8Co0.15Al0.05O2 cathode material by ethanol solvent[J]. Transactions of Nonferrous Metals Society of China,2018,28(8):1626-1631. doi: 10.1016/S1003-6326(18)64805-8
    [70] XU Sheng, DU Chunyu, XU Xing, et al. A mild surface washing method using protonated polyaniline for Ni-rich LiNi0.8Co0.1Mn0.1O2 material of lithium ion batteries[J]. Electrochimica Acta, 2017, 248: 534-540.
    [71] KIM Yoojung, CHO Jaephil. Lithium-reactive Co3(PO4)2 nanoparticle coating on high-capacity LiNi0.8Co0.16Al0.04O2 cathode material for lithium rechargeable batteries[J]. Journal of the Electrochemical Society,2007,154(6):A495-A499. doi: 10.1149/1.2716556
    [72] EOM Junho, RYU Kwangsun, CHO Jaephil. Dependence of electrochemical behavior on concentration and annealing temperature of LixCoPO4 phase-grown LiNi0.8Co0.16Al0.04O2 cathode materials[J]. Journal of the Electrochemical Society,2008,155(3):A228-A233. doi: 10.1149/1.2829887
    [73] PARK Kwangjin, PARK Junho, HONG Sukgi, et al. Enhancement in the electrochemical performance of zirconium/phosphate bi-functional coatings on LiNi0.8Co0.15Mn0.05O2 by the removal of Li residuals[J]. Physical Chemistry Chemical Physics,2016,18(42):29076-29085. doi: 10.1039/C6CP05286J
    [74] DING Yan, DENG Bangwei, WANG Hao, et al. Improved electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode material by reducing lithium residues with the coating of Prussian blue[J]. Journal of Alloys and Compounds,2019,774:451-460. doi: 10.1016/j.jallcom.2018.09.286
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  1497
  • HTML全文浏览量:  1644
  • PDF下载量:  361
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-14
  • 修回日期:  2021-05-21
  • 录用日期:  2021-05-31
  • 网络出版日期:  2021-06-08
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回