留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

C6位羧基纤维素制备及其对Cu2+吸附性能

李继丰 闫文静 方婷 顾殿宽 胡超凡 杜兆芳 陈巍

李继丰, 闫文静, 方婷, 等. C6位羧基纤维素制备及其对Cu2+吸附性能[J]. 复合材料学报, 2022, 39(3): 1280-1290. doi: 10.13801/j.cnki.fhclxb.20210607.004
引用本文: 李继丰, 闫文静, 方婷, 等. C6位羧基纤维素制备及其对Cu2+吸附性能[J]. 复合材料学报, 2022, 39(3): 1280-1290. doi: 10.13801/j.cnki.fhclxb.20210607.004
LI Jifeng, YAN Wenjing, FANG Ting, et al. Preparation of C6 carboxylic cellulose and adsorption for Cu2+[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1280-1290. doi: 10.13801/j.cnki.fhclxb.20210607.004
Citation: LI Jifeng, YAN Wenjing, FANG Ting, et al. Preparation of C6 carboxylic cellulose and adsorption for Cu2+[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1280-1290. doi: 10.13801/j.cnki.fhclxb.20210607.004

C6位羧基纤维素制备及其对Cu2+吸附性能

doi: 10.13801/j.cnki.fhclxb.20210607.004
基金项目: 安徽省科技重大专项(16030701089;18030701206)
详细信息
    通讯作者:

    杜兆芳,博士,教授,博士生导师,研究方向为生物质纤维材料改性及应用 E-mail:dzf@ahau.edu.cn

  • 中图分类号: X505;TQ424

Preparation of C6 carboxylic cellulose and adsorption for Cu2+

  • 摘要: 为提高纤维素对金属离子污染物的吸附能力,本实验通过选择性氧化体系制备C6位羧基微晶纤维素(CMCC),利用现代测试表征技术分析了CMCC的氧化过程和氧化机制,并研究了CMCC对Cu2+吸附性能。结果表明,NMR和FTIR测试说明HNO3/H3PO4-NaNO2氧化体系可将微晶纤维素(MCC)大分子中吡喃葡萄糖环上C6位伯羟基选择性氧化成羧基。氧化反应对MCC表面产生一定程度的刻蚀,制备的CMCC吸湿性高、结晶度低,同时氧化会造成MCC热稳定性降低。Cu2+吸附实验显示CMCC吸附行为遵循准二级动力学模型和Langmuir等温线,对Cu2+的饱和吸附容量高达165.5 mg/g。吸附热力学分析发现,CMCC对Cu2+的吸附方式主要是通过羧基和金属离子化学反应的结合。实验表明该含有活性羧基的功能性纤维素可作为一种高效的吸附剂,广泛应用在金属离子污染物处理领域。

     

  • 图  1  微晶纤维素(MCC)和C6位羧基微晶纤维素(CMCC)的固相13C CP/MAS NMR谱图

    Figure  1.  Solid-state 13C CP/MAS NMR spectra of microcrystalline cellulose (MCC) and C6 carboxylic microcrystalline cellulose (CMCC)

    图  2  不同氧化时间的MCC的FTIR图谱(A:MCC;B~H:氧化30 min、60 min、90 min、120 min、150 min、180 min和300 min的CMCC)

    Figure  2.  FTIR spectra of MCC by oxidized with different time (A: MCC; B-H: CMCC with oxidation of 30 min, 60 min, 90 min, 120 min, 150 min, 18 0min and 300 min, respectively)

    图  3  MCC的氧化机制图

    Figure  3.  Oxidation schematic diagram of MCC

    图  4  MCC氧化前后的微观形貌图像((a) MCC;(b) CMCC氧化30 min;(c) CMCC氧化120 min;(d) CMCC氧化180 min)

    Figure  4.  Microscopic morphologies before and after MCC oxidation ((a) MCC; (b) CMCC with oxidation time of 30 min; (c) CMCC with oxidation time of 120 min; (d) CMCC with oxidation time of 180 min)

    图  5  不同氧化时间的MCC的XRD图谱(A:MCC;B~H:氧化30 min、60 min、90 min、120 min、150 min、180 min和300 min的CMCC)

    Figure  5.  XRD patterns of MCC by oxidized with different time (A: MCC; B-H: CMCC with oxidation of 30 min, 60 min, 90 min, 120 min, 150 min, 180 min and 300 min, respectively)

    图  6  MCC和不同氧化时间的CMCC的DTG曲线

    Figure  6.  DTG curves of MCC and CMCC by oxidized with different time

    A—MCC; B-H—CMCC with oxidation of 30 min, 60 min, 90 min, 120 min, 150 min, 180 min and 300 min, respectively

    图  7  溶液pH和电解质NaCl对氧化3 h的CMCC吸附性能的影响

    Figure  7.  Effect of pH and NaCl on the adsorption properties of CMCC oxidized for 3 h

    图  8  吸附时间对氧化3 h的CMCC吸附性能的影响

    Figure  8.  Effect of time on the adsorption performance of CMCC oxidized for 3 h

    Qt—Adsorption amout of Cu2+ corresponding to adsorption time t

    图  9  氧化3 h的CMCC吸附Cu2+的动力学模型拟合曲线:(a) 准一级动力学模型;(b) 准二阶动力学模型

    Figure  9.  Kinetic fitting curves of adsorption data of Cu2+ onto CMCC oxidized for 3 h: (a) Pseudo-first-order kinetic model; (b) Pseudo-second-order kinetic model

    Qe—Amout of Cu2+ removed per unit mass of adsorbent

    图  10  不同初始浓度的Cu2+对氧化3 h的CMCC吸附性能的影响

    Figure  10.  Effect of initial concentrations on the adsorption capacities of Cu2+ onto CMCC oxidized for 3 h

    图  11  氧化3 h的CMCC对Cu2+的等温吸附模型拟合曲线

    Figure  11.  CMCC oxidized for 3 h isothermal adsorption model for Cu2+ fitting curve

    Ce—MB concentration at adsorption equilibrium

    图  12  氧化3 h的CMCC吸附Cu2+热力学拟合曲线

    Figure  12.  Thermodynamic fitting curve of adsorption data of Cu2+ onto CMCC oxidized for 3 h

    Kc—Adsorption equilibrium constant

    表  1  氧化3 h的CMCC吸附Cu2+的动力学模型拟合参数

    Table  1.   Parameters of kinetic adsorption models for Cu2+ onto CMCC oxidized for 3 h

    AdsorbatesQexp/(mg·g−1)Pseudo-first-order modelPseudo-second-order model
    Q1e,cal/(mg·g−1)k1/min−1R2Q2e,cal/(mg·g−1)k2/(g·mg−1·min−1)R2
    Cu2+ 162.5 91.2 1.06×10−2 0.9755 155.6 9.1×10−5 0.9967
    Notes: k1, k2—Pseudo-first-order kinetic and Pseudo-second-order kinetic constants, respectively; Qe(cal)—Calculation amount of Cu2+ removed per unit mass of adsorbent; Qe(exp)—Experimental amount of Cu2+ removed per unit mass of adsorbent; R2—Correlation coefficient.
    下载: 导出CSV

    表  2  氧化3 h的CMCC对Cu2+的吸附等温拟合结果

    Table  2.   Isothermal parameters for the adsorption of Cu2+ onto CMCC-3

    AdsorbatesLangmuirFreundlich
    Qm/(mg·g−1)kL/(L·mg−1)R2kF/(L·mg−1)nR2
    Cu2+ 165.5 0.0074 0.9985 7.8 2.2 0.7903
    Notes: Qm—Langmuir adsorption maximum; kL—Langmuir coefficient of distribution of the adsorption;kF—Freundlich coefficient of distribution of the adsorption; n—Heterogeneous coefficient.
    下载: 导出CSV

    表  3  同类纤维素对Cu2+的吸附容量对比

    Table  3.   Adsorption capacity comparison of similar cellulose adsorbents to Cu2+

    AdsorbentAdsorption capacity/(mg·g−1)References
    MCC 15.5 [23]
    TEMPO oxidized cellulose 112.0 [24]
    Phosphorylated cellulose 114.0 [25]
    Carboxymethyl cellulose 115.5 [26]
    CMCC 165.5 This work
    Note: TEMPO—2,2,6, 6-Tetramethylpiperidine-nitrogen oxide.
    下载: 导出CSV

    表  4  氧化3 h的CMCC吸附Cu2+的热力学参数

    Table  4.   Values of thermodynamic parameters for the adsorption of Cu2+ onto CMCC oxidized for 3 h

    T/KΔGo/(kJ·mol−1)ΔHo/(kJ·mol−1)ΔSo/(J·mol−1·K−1)
    303 −2.5 −23 −65.4
    308 −1.7
    313 −1.4
    318 −0.9
    323 −0.7
    Notes: ΔGo—Change in Gibbs free energy for the adsorption process; ΔHo—Change in enthalpy of adsorption; ΔSo—Entropy change of adsorption process.
    下载: 导出CSV
  • [1] DU Z L, CHEN H A, GUO X Y, et al. Mechanism and industrial application feasibility analysis on microwave-assisted rapid synthesis of amino-carboxyl functionalized cellulose for enhanced heavy metal removal[J]. Chemosphere,2021,268:128833. doi: 10.1016/j.chemosphere.2020.128833
    [2] PEI L J, LIU J J, GU X M, et al. Adsorption kinetic and mechanism of reactive dye on cotton yarns with different wettability in siloxane non-aqueous medium[J]. Journal of the Textile Institute,2019,111(7):925-933.
    [3] PEI X P, GAN L, TONG Z H, et al. Robust cellulose-based composite adsorption membrane for heavy metal removal[J]. Journal of Hazardous Materials,2021,406:115-125.
    [4] 王瑞佳, 聂敬恒, 樊源源, 等. 微晶纤维素辅助制备C-TiO2复合材料及其对Cd2+的吸附性能[J]. 复合材料学报, 2020, 37(2):415-421.

    WANG Ruijia, NIE Jingheng, FAN Yuanyan, et al. Preparation of C-TiO2 composite with assistance of microcrystalline cellulose and its adsorption properties for Cd2+[J]. Acta Materiae Compositae Sinica,2020,37(2):415-421(in Chinese).
    [5] GUO X, XU D, YUAN H M, et al. A novel fluorescent nanocellulosic hydrogel based on carbon dots for efficient adsorption and sensitive sensing in heavy metals[J]. Journal of Materials Chemistry A,2019,7(47):27081-27088. doi: 10.1039/C9TA11502A
    [6] 张晓涛, 王喜明. 木质纤维素/纳米蒙脱土复合材料对废水中Cu(II)的吸附及解吸[J]. 复合材料学报, 2015, 32(2):385-394.

    ZHANG Xiaotao, WANG Ximing. Adsorption and desorption of Cu (II) in wastewater by lignocellulose/ nano-montmorillonite composites[J]. Acta Materiae Compositae Sinica,2015,32(2):385-394(in Chinese).
    [7] SARKAYA K, BAKHSHPOUR M, BENIZLI A. Ag+ ions imprinted cryogels for selective removal of silver ions from aqueous solutions[J]. Separation Science and Technology,2019,54(18):2993-3004. doi: 10.1080/01496395.2018.1556300
    [8] SELLAOUI L, SOETAREDJO F, ISMADJI S, et al. Insights on the statistical physics modeling of the adsorption of Cd2+ and Pb2+ ions on bentonite-chitosan composite in single and binary systems[J]. Chemical Engineering Journal,2018,354:569-576. doi: 10.1016/j.cej.2018.08.073
    [9] TAO J, XIONG J, JIAO C, et al. Hybrid mesoporous silica based on hyperbranch-substrate nanonetwork as highly efcient adsorbent for water treatment[J]. ACS Sustainable Chemistry & Engineering,2016,4(1):60-68.
    [10] SELAMBAKKANNU S, OTHMAN N, BAKAR K, et al. Modification of radiation grafted banana trunk fibers for adsorption of anionic dyes[J]. Fibers and Polymers,2019,20(2):2556-2569.
    [11] VALENCIA L, MONTI S, KUMAR S, et al. Nanocellulose/graphene oxide layered membranes: Elucidating their behaviour during filtration of water and metal ions in real time[J]. Nanoscale,2019,11(46):22413-22422. doi: 10.1039/C9NR07116D
    [12] 谢水波, 罗景阳, 刘青, 等. 羟乙基纤维素/海藻酸钠复合膜对六价铀的吸附性能及吸附机制[J]. 复合材料学报, 2015, 32(1):268-275.

    XIE S B, LUO J Y, LIU Q, et al. Adsorption characteristics and mechanism of hydroxyethyl cellulose/sodium alginate blend films for uranium(Ⅵ)[J]. Acta Materiae Compo-sitae Sinica,2015,32(1):268-275(in Chinese).
    [13] HOU X B, LI Y C, PAN Y F, et al. Controlled release of agrochemicals and heavy metal ion capture dual-functional redox-responsive hydrogel for soil remediation[J]. Chemical Communications,2018,54(97):13714-13717. doi: 10.1039/C8CC07872F
    [14] QIN F M, FANG Z Q, ZHOU J, et al. Efficient removal of Cu2+ in water by carboxymethylated cellulose nanofibrils: Performance and mechanism[J]. Biomacromolecules,2019,20(12):4466-4475. doi: 10.1021/acs.biomac.9b01198
    [15] HUANG Z J, HUANG Z Y, FENG L J, et al. Modified cellulose by polyethyleneimine and ethylenediamine with induced Cu(II) and Pb(II) adsorption potentialities[J]. Carbohydrate Polymers,2018,202:470-478. doi: 10.1016/j.carbpol.2018.08.136
    [16] LI Y, XIAO H N, PAN Y F, et al. Study on cellulose microfilaments based composite spheres: Microwave-assisted synthesis, characterization, and application in pollutant removal[J]. Journal of Environmental Management,2018,228:85-92.
    [17] XU Y H, CHEN D D, Du Z F, et al. Structure and properties of silk fibroin grafted carboxylic cotton fabric via amide covalent modification[J]. Carbohydrate Polymers,2017,161:99-108. doi: 10.1016/j.carbpol.2016.12.071
    [18] PISITSAK P, PHAMONPON W, SOONTORNCHATCHAVET P, et al. The use of water hyacinth fibers to develop chitosan-based biocomposites with improved Cu2+ removal efficiency[J]. Composites Communications,2019,16:1-4. doi: 10.1016/j.coco.2019.08.003
    [19] ZHANG L L, LU H L, YU J, et al. Synthesis of lignocellulose-based composite hydrogel as a novel biosorbent for Cu2+ removal[J]. Cellulose,2018,25(12):7315-7328. doi: 10.1007/s10570-018-2077-8
    [20] ALLOUSS D, ESSAMLALI Y, CHAKIR A, et al. Effective removal of Cu(II) from aqueous solution over graphene oxide encapsulated carboxymethy lcellulose- alginate hydrogel microspheres: Towards real wastewater treatment plants[J]. Cellulose, 2020, 27(7): 7476-7492.
    [21] TIAN C H, SHE J R, WU Y Q, et al. Reusable and cross-linked cellulose nanofibrils aerogel for the removal of heavy metal ions[J]. Polymer Composites,2018,39(12):4442-4451. doi: 10.1002/pc.24536
    [22] MILHOMENS G C, DE ALMEIDA C G, ZANETTE R D S, et al. Biocompatibility and adsorption properties of hydrogels obtained by graft polymerization of acrylic acid on cellulose from rice hulls[J]. Iranian Polymer Journal,2018,27(12):1023-1032. doi: 10.1007/s13726-018-0672-z
    [23] MEHREZ E E N, EMAD K R, SHAIMAA T E, et al. Synthesis, characterization and adsorption properties of microcrystalline cellulose based nanogel for dyes and heavy metals removal[J]. International Journal of Biological Macromolecules, 2018, 113: 248-258.
    [24] SRIVASTAVA S, KARDAM, RAJ K R. Nanotech reinforcement onto cellulosic fibers: Green remediation of toxic metals[J]. International Journal of Green Nanotechnology,2012,4(1):46-53. doi: 10.1080/19430892.2012.654744
    [25] LIU P, BORRALL P F, BOZIC M, et al. Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+and Fe3+ from industrial effluents[J]. Journal of Hazardous Materials,2015,294:177-185. doi: 10.1016/j.jhazmat.2015.04.001
    [26] SEHAQUI H, DE LARRAYA U P, LIU P, et al. Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment[J]. Cellulose,2014,21:2831-2844. doi: 10.1007/s10570-014-0310-7
    [27] LIU F L, HUA S, ZHOU L, et al. Development and characterization of chitosan functionalized dialdehyde viscose fiber for adsorption of Au(III) and Pd(II)[J]. International Journal of Biological Macromolecules,2021,173:457-466. doi: 10.1016/j.ijbiomac.2021.01.145
    [28] DU K F, LI S K, ZHAO L S, et al. One-step growth of porous cellulose beads directly on bamboo fibers via oxidation-derived method in aqueous phase and their potential for heavy metal ions adsorption[J]. ACS Sustainable Chemistry & Engineering,2018,6(12):17068-17075.
    [29] LAI W J, LIN S C. Hydroxyethyl cellulose-grafted loofa sponge-based metal affinity adsorbents for protein purification and enzyme immobilization[J]. Process Biochemistry,2018,74:141-147. doi: 10.1016/j.procbio.2018.08.024
    [30] MYERS A L. Thermodynamics of adsorption in porous materials[J]. Aiche Journal, 2002, 48(1): 145-160.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  952
  • HTML全文浏览量:  475
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-31
  • 修回日期:  2021-05-19
  • 录用日期:  2021-06-02
  • 网络出版日期:  2021-06-07
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回