留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳点基白光荧光薄膜的研究进展

陈童 刘兴华 郑静霞 杨永珍 刘旭光

陈童, 刘兴华, 郑静霞, 等. 碳点基白光荧光薄膜的研究进展[J]. 复合材料学报, 2022, 39(1): 48-63. doi: 10.13801/j.cnki.fhclxb.20210607.003
引用本文: 陈童, 刘兴华, 郑静霞, 等. 碳点基白光荧光薄膜的研究进展[J]. 复合材料学报, 2022, 39(1): 48-63. doi: 10.13801/j.cnki.fhclxb.20210607.003
CHEN Tong, LIU Xinghua, ZHENG Jingxia, et al. Research progress of carbon dots based white light emitting fluorescent films[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 48-63. doi: 10.13801/j.cnki.fhclxb.20210607.003
Citation: CHEN Tong, LIU Xinghua, ZHENG Jingxia, et al. Research progress of carbon dots based white light emitting fluorescent films[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 48-63. doi: 10.13801/j.cnki.fhclxb.20210607.003

碳点基白光荧光薄膜的研究进展

doi: 10.13801/j.cnki.fhclxb.20210607.003
基金项目: 国家自然科学基金 (51972221);山西省省筹资金资助回国留学人员科研项目 (2020-051);山西省回国留学人员科研资助项目(HGKY2019027)
详细信息
    通讯作者:

    杨永珍,博士,教授,博士生导师,研究方向为纳米碳功能材料  E-mail:yyztyut@126.com

    郑静霞,博士,讲师,研究方向为纳米碳功能材料  E-mail:zhengjingxia@tyut.edu.cn

  • 中图分类号: TB332, O613.71

Research progress of carbon dots based white light emitting fluorescent films

  • 摘要: 碳点 (Carbon dots,CDs) 具有制备简单、来源广泛、毒性低和光学性能优异等特性,可作为发光材料应用于固态照明器件中。基于CDs荧光薄膜的制备及实现其白光发射的方式不同,使其白光荧光薄膜的性能各异。首先,介绍了CDs的光致发光机制;其次,根据CDs荧光薄膜的形成方式归纳为CDs/聚合物荧光薄膜和CDs自组装荧光薄膜两类,并介绍其制备方法;然后,根据荧光薄膜中所含荧光材料的种类,将实现荧光薄膜白光发射的方式概括为两种:混合多色荧光材料和使用单一白光CDs;最后,提出白光CDs及其荧光薄膜目前存在的问题,并展望其进一步的发展。

     

  • 图  1  荧光碳点(CDs)的类型[21]:石墨烯量子点(GQDs)、碳量子点(CQDs)、碳纳米点(CNDs)和碳化聚合物点(CPDs)

    Figure  1.  Types of fluorescent carbon dots (CDs) [21]: Graphene quantum dots (GQDs), carbon quantum dots (CQDs), carbon nanodots (CNDs) and carbonized polymer dots (CPDs)

    图  2  (a) 溶剂热法制备蓝-红CQDs的示意图;(b) 最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)能级与CQDs大小的依赖关系[24];(c) 在添加和不添加酒石酸 (TA) 的情况下,使用间苯二胺和邻苯二胺制备多色CDs的工艺示意图;所获得的b-CDs、g-CDs、y-CDs和r-CDs在自然光(d)和365 nm紫外光(e)下在乙醇中分散的照片;(f) 在365 nm激发下,多色CDs (在乙醇中) 归一化的PL谱图[25];(g) CDs 合成的原理图[27]

    Figure  2.  (a) Preparation of CQDs from blue to red by solvothermal treatment; (b) Dependence of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels with respect to the size of CQDs [24]; (c) Schematic illustration of the preparation process for multicolor CDs using m- and o-phenylenediamines in the absence and presence of tartaric acid (TA), respectively; Photographs of the obtained b-CDs, g-CDs, y-CDs, and r-CDs dispersions in ethanol under natural light (d) and 365 nm UV light (e), respectively; (f) Normalized PL emission spectra of the multicolor CDs (in ethanol) under excitation of 365 nm [25]; (g) Schematic diagram of synthesizing CDs [27]

    图  3  (a) 不同pH值下,520 nm波长激发的红光CDs的PL光谱[35];(b) CDs在不同不混溶溶剂中的双色荧光层[36];(c) 随压力的增加而变化的CDs的PL光谱[41]

    Figure  3.  (a) PL spectra of the red-emitting CDs at different pH values under excitation at 520 nm [35]; (b) Two-color fluorescent layers of CDs in different immiscible solvents [36]; (c) PL spectra change of CDs as the pressure increases [41]

    图  4  CDs/环氧树脂荧光薄膜的透射光谱图(a)和CDs质量分数与薄膜厚度的关系(b)[43];CDs/聚乙烯醇 (PVA) 荧光薄膜的结构(c)及其水响应形状记忆功能(d)原理图;纯PVA和CDs/PVA荧光薄膜在自然光(e)和 紫外光(f)下的照片及CDs/PVA荧光薄膜在室温下并在自然光(g)和紫外光(h)下的形状恢复过程[51]

    Figure  4.  Transmission spectra and relationship between the mass fraction of CDs (a) and the thickness of CDs/epoxy fluorescent film (b) [43]; Structure (c) and water-responsive shape memory mechanism (d) of CDs/Poly (vinyl alcohol) (PVA) fluorescent film; Photograph of pure PVA and CDs/PVA fluorescent film under natural (e) and UV light (f), and shape recovery process of CDs/PVA fluorescent film at room temperature under natural (e) and UV light (f)[51]

    图  5  (a) 绿光CDs (G-CDs) /甲基三乙氧基硅烷 (MTES) 和红光CDs (R-CDs) /3-氨基丙基-三乙氧基硅烷 (APTES) 的制备及其在LED中的应用[52];(b) CDs/PEI荧光薄膜的形成机制[54]

    Figure  5.  (a) Preparations of green light CDs (G-CDs) /Methyltriethoxysilane (MTES) and red light CDs (R-CDs) /3-amino-propyl-triethoxysilane (APTES) and their applications in LED [52]; (b) Formation mechanism of CDs/PEI fluorescent film [54]

    图  6  (a) CDs/聚丙烯酰胺/聚丙烯酸 (CDs/AA/AAc) 凝胶薄膜的制备流程图[58];(b) 多色LED的发光光谱;(c) 白光LED的色坐标 (插图为工作状态下的发光图);(d) 白光LED的发光光谱; (e) 在开始和工作20天后的发光谱图[64];(f) 白光 CDs (W-CDs) 的制备工艺图,插图为其在自然光 (左) 和紫外光 (右) 下的照片[70]

    Figure  6.  (a) Schematic diagram for preparation process of CDs/Acrylamide/Acrylic Acid (CDs/AA/AAc) hydrogel film [58]; Characterization of LEDs fabricated using the CDs: (b) Emitting light spectrum of multicolor LEDs; (c) CIE color coordinates of the white LEDs (Inset at right top corner is the optical photograph of the white LED at on-state); (d) Emitting light spectrum of white LEDs; (e) Emitting spectra of the white LED at initial and after illustrating over 20 days [64]; (f) Schematic illustration of the formation process and structure of the W-CDs, inset: Photographs of the W-CDs under natural light (left) and UV lamp (right) (365 nm) [70]

    表  1  白光CDs及其荧光薄膜在LED中的应用[31, 69-80]

    Table  1.   Applications of white light CDs and their fluorescent films in LEDs [31, 69-80]

    λex/nm

    (for CDs)
    PL range/nmQY/%StateFilmλex/nm
    (for UV chip)
    CCT/KCRICIERef
    400 400-750 29 Liquid CDs/HEMA 400 92 (0.33, 0.33) [31]
    350 400-800 11 Liquid CDs/PVA 365 7023 (0.30, 0.33) [69]
    365 400-700 6.7 Solid CDs/epoxy 365 6987 83 (0.30, 0.35) [70]
    365 400-600 9.6 Liquid CDs/PMMA 365 (0.24, 0.33) [71]
    365 400-750 10 Solid 400 3032 91 (0.42, 0.38) [72]
    380 400-800 12.7 Liquid CDs/PVP 380 5136 80 (0.33, 0.33) [73]
    340 380-700 17.81 Liquid CDs/PVA 340 8442 74 (0.29, 0.33) [74]
    365 550-800 29.7 Liquid CDs/PVP 365 5475 88 (0.35, 0.36) [75]
    365 380-800 39 Liquid CDs/PMMA 365 5994 86.7 (0.33, 0.33) [76]
    365 400-750 41 Solid 380 4935 85 (0.35, 0.39) [77]
    375 400-700 41 Solid 370 8756 85.3 (0.27, 0.35) [78]
    365 400-650 Liquid CDs/PVB 365 (0.32, 0.31) [79]
    365 400-750 46 Solid CDs/Silicone resin 365 5028 82 (0.34, 0.38) [80]
    Notes: λex—Excitation wavelength; QY—Quantum yield; CCT—Correlated color temperature; CRI—Color rendering index; CIE—Commission Internationale de l'Eclairage; HEMA—2-Hydroxyethyl methacrylate; PMMA—Poly(methyl methacrylate); PVP—Polyvinylpyrrolidone; PVB—Polyvinyl Butyral.
    下载: 导出CSV
  • [1] YE S, XIAO F, PAN Y X, et al. Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties[J]. Materials Science and Engineering: R: Reports,2011,71(1):1-34.
    [2] CHEN L, LIN C C, YEH C W, et al. Light converting inorga-nic phosphors for white light-emitting diodes[J]. Materials,2011,3(3):2172-2195.
    [3] CHANG M H, DAS D, VARDE P V, et al. Light emitting diodes reliability review[J]. Microelectronics Reliability,2012,52(5):762-782. doi: 10.1016/j.microrel.2011.07.063
    [4] JIANG K, SUN S, ZHANG L, et al. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging[J]. Angewandte Chemie International Edition,2015,127(18):5450-5453. doi: 10.1002/ange.201501193
    [5] YANG X, MUTLUHUN E, DANG C, et al. Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers[J]. ACS Nano,2014,8(8):8224-8231. doi: 10.1021/nn502588k
    [6] ZHOU D, ZOU H, LIU M, et al. Surface ligand dynamics-guided preparation of quantum dots-cellulose composites for light-emitting diodes[J]. ACS Applied Materials & Interfaces,2015,7(29):15830-15839.
    [7] LIU H, WU Z, GAO H, et al. One-step preparation of cesium lead halide CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals by microwave irradiation[J]. ACS Applied Materials & Interfaces,2017,9(49):42919-42927.
    [8] PAN A Z, WANG J L, JUROW M J, et al. General strategy for the preparation of stable luminous nanocomposite inks using chemically addressable CsPbX3 peroskite nanocrystals[J]. Chemistry of Materials,2018,30(8):2771-2780. doi: 10.1021/acs.chemmater.8b00587
    [9] CHEN D, CHEN X, GAO H, et al. Red C-dots and C-dot films: solvothermal synthesis, excitation-independent emission and solid-state-lighting[J]. RSC Advances,2018,8(52):29855-29861. doi: 10.1039/C8RA06235H
    [10] ZOU S B, FAN H, YANG H, et al. Investigating in novel CdZnSe/CdSe/CdZnSe quantum well with 97% PLQY[J]. Modern Physics Letters B,2020,34(21):2050222. doi: 10.1142/S021798492050222X
    [11] CHEN Q L, WANG C F, CHEN S. One-step synthesis of yellow-emitting carbogenic dots toward white light-emitting diodes[J]. Journal of Materials Science,2012,48(6):2352-2357.
    [12] 车望远, 刘长军, 杨焜, 等. 荧光碳点的制备和性质及其应用研究进展[J]. 复合材料学报, 2016, 33(3):431-450.

    CHE Wangyuan, LIU Changjun, YANG Kun, et al. Research progress in preparation, property and applications of fluo-rescent carbondots[J]. Acta Materiae Compositae Sinica,2016,33(3):431-450(in Chinese).
    [13] SUN Y P, ZHOU B, LIN Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society,2006,128(24):7756-7757. doi: 10.1021/ja062677d
    [14] LIM S Y, SHEN W, GAO Z. Carbon quantum dots and their applications[J]. Chemical Society Reviews,2015,44(1):362-381. doi: 10.1039/C4CS00269E
    [15] AI L, YANG Y, WANG B, et al. Insights into photoluminescence mechanisms of carbon dots: Advances and per-spectives [J]. Science Bulletin, 2021, 66(8): 839-856.
    [16] HE P, SHI Y, MENG T, et al. Recent advances in white light-emitting diodes of carbon quantum dots[J]. Nanoscale,2020,12(8):4826-4832. doi: 10.1039/C9NR10958G
    [17] 李世嘉, 庞尔楠, 郝彩红, 等. 固态荧光碳点的制备[J]. 化学进展, 2020, 32(5):548-561.

    LI Shijia, PANG Ernan, HAO Caihong, et al. Preparation of solid-state fluorescent carbon dots[J]. Progress in Che-mistry,2020,32(5):548-561(in Chinese).
    [18] GAO H B, CHEN D Q, FANG G L, et al. Excellent luminescence films of excitation-independent carbon quantum dots toward non-rare-earth phosphor-based white light-emitting diodes[J]. Journal of Alloys and Compounds,2018,764:17-23. doi: 10.1016/j.jallcom.2018.06.059
    [19] SUN C, ZHANG Y, SUN K, et al. Combination of carbon dot and polymer dot phosphors for white light-emitting diodes[J]. Nanoscale,2015,7(28):12045-12050. doi: 10.1039/C5NR03014E
    [20] LAI C F, LI J S, FANG Y T, et al. UV and blue-light anti-reflective structurally colored contact lenses based on a copolymer hydrogel with amorphous array nanostructures[J]. RSC Advances,2018,8(8):4006-4013. doi: 10.1039/C7RA12753G
    [21] XIA C, ZHU S, FENG T, et al. Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots[J]. Advanced Science,2019,6(23):1901316. doi: 10.1002/advs.201901316
    [22] YAN F, SUN Z, ZHANG H, et al. The fluorescence mecha-nism of carbon dots, and methods for tuning their emission color: A review[J]. Microchimica Acta,2019,186(8):1-37.
    [23] YAN Y, GONG J, CHEN J, et al. Recent advances on graphene quantum dots: From chemistry and physics to applications[J]. Advanced Materials,2019,31(21):1808283. doi: 10.1002/adma.201808283
    [24] YUAN F, WANG Z, LI X, et al. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes[J]. Advanced Materials,2017,29(3):1604436. doi: 10.1002/adma.201604436
    [25] JIANG K, FENG X, GAO X, et al. Preparation of multicolor photoluminescent carbon dots by tuning surface states[J]. Nanomaterials,2019,9(4):529. doi: 10.3390/nano9040529
    [26] LI H, HAN S, LYU B, et al. Tunable light emission from carbon dots by controlling surface defects [J]. Chinese Che-mical Letters, 2021, 32(9): 2887-2892.
    [27] WANG J, LI Q, ZHENG J, et al. N, B-codoping induces high-efficiency solid-state fluorescence and dual emission of yellow/orange carbon dots[J]. ACS Sustainable Chemistry & Engineering,2021,9(5):2224-2236.
    [28] LI F, YANG D, XU H. Non-metal-heteroatom-doped carbon dots: Synthesis and properties[J]. Chemistry A European Journal,2019,25(5):1165-1176. doi: 10.1002/chem.201802793
    [29] CHEN B B, LIU M L, LI C M, et al. Fluorescent carbon dots functionalization[J]. Advances in Colloid and Interface Science,2019,270:165-190. doi: 10.1016/j.cis.2019.06.008
    [30] XIA C, CAO M, XIA J, et al. Preparation of tunable full-color emission carbon dots and their optical applications in ions detection and bio-imaging[J]. Journal of the American Ceramic Society,2020,103(8):4507-4516. doi: 10.1111/jace.17112
    [31] ZHANG T, ZHAO F, LI L, et al. Tricolor white-light-emitting carbon dots with multiple-cores@ shell structure for WLED application[J]. ACS Applied Materials & Interfaces,2018,10(23):19796-19805.
    [32] SONG Y, ZHU S, ZHANG S, et al. Investigation from che-mical structure to photoluminescent mechanism: A type of carbon dots from the pyrolysis of citric acid and an amine[J]. Journal of Materials Chemistry C,2015,3(23):5976-5984. doi: 10.1039/C5TC00813A
    [33] TAO S, FENG T, ZHENG C, et al. Carbonized polymer dots: A brand new perspective to recognize luminescent carbon-based nanomaterials[J]. The Journal of Physical Chemistry Letters,2019,10(17):5182-5188. doi: 10.1021/acs.jpclett.9b01384
    [34] ZHU S, WANG L, ZHOU N, et al. The crosslink enhanced emission (CEE) in non-conjugated polymer dots: From the photoluminescence mechanism to the cellular uptake mechanism and internalization[J]. Chemical Communications,2014,50(89):13845-13848. doi: 10.1039/C4CC05806B
    [35] DING H, YU S B, WEI J S, et al. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism[J]. ACS Nano,2016,10(1):484-491. doi: 10.1021/acsnano.5b05406
    [36] KUMARI R, SAHU S K. Effect of solvent-derived highly luminescent multicolor carbon dots for white-light-emitting diodes and water detection[J]. Langmuir,2020,36(19):5287-5295. doi: 10.1021/acs.langmuir.0c00631
    [37] STEPANIDENKO E A, AREFINA I A, KHAVLYUK P D, et al. Influence of the solvent environment on luminescent centers within carbon dots[J]. Nanoscale,2020,12(2):602-609. doi: 10.1039/C9NR08663C
    [38] WANG C, XU Z, CHENG H, et al. A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature[J]. Carbon,2015,82:87-95. doi: 10.1016/j.carbon.2014.10.035
    [39] LIU J, WANG N, YU Y, et al. Carbon dots in zeolites: A new class of thermally activated delayed fluorescence mater-ials with ultralong lifetimes[J]. Science Advances,2017,3(5):e1603171. doi: 10.1126/sciadv.1603171
    [40] JIANG K, WANG Y, LI Z, et al. Afterglow of carbon dots: Mechanism, strategy and applications[J]. Materials Chemistry Frontiers,2020,4(2):386-399. doi: 10.1039/C9QM00578A
    [41] LIU C, XIAO G, YANG M, et al. Mechanofluorochromic carbon nanodots: Controllable pressure-triggered blue-and red-shifted photoluminescence[J]. Angewandte Chemie International Edition,2018,57(7):1893-1897. doi: 10.1002/anie.201711409
    [42] LU S, XIAO G, SUI L, et al. Piezochromic carbon dots with two-photon fluorescence[J]. Angewandte Chemie International Edition,2017,129(22):6283-6287. doi: 10.1002/ange.201700757
    [43] MAHEN E C S, NURYADIN B W, ISKANDAR F, et al. Fluorescent of C-dot composite thin films and its properties [C]. AIP Conference Proceedings, 2014, 1586 (1): 136-138.
    [44] AZIZ S B, HASSAN A Q, MOHAMMED S J, et al. Structural and optical characteristics of PVA: C-Dot composites: Tuning the absorption of ultra violet (UV) region[J]. Nanomaterials,2019,9(2):216. doi: 10.3390/nano9020216
    [45] SHEN C L, ZANG J H, LOU Q, et al. In-situ embedding of carbon dots in a trisodium citrate crystal matrix for tunable solid-state fluorescence[J]. Carbon,2018,136:359-368. doi: 10.1016/j.carbon.2018.05.015
    [46] ZHU J, SHAO H, BAI X, et al. Modulation of the photoluminescence in carbon dots through surface modification: From mechanism to white light-emitting diodes[J]. Nanotechnology,2018,29(24):245702. doi: 10.1088/1361-6528/aab9d6
    [47] LIU Y, ZHANG T, WANG R, et al. A facile and universal strategy for preparation of long wavelength emission carbon dots[J]. Dalton Transactions,2017,46(48):16905-16910. doi: 10.1039/C7DT03089D
    [48] FERNANDES D, HESLOP K A, KELARAKIS A, et al. In situ generation of carbon dots within a polymer matrix[J]. Polymer,2020,188:122159. doi: 10.1016/j.polymer.2020.122159
    [49] LIAN F, WANG C X, WU Q, et al. In situ synthesis of stretchable and highly stable multi-color carbon-dots/polyurethane composite films for light-emitting devices[J]. RSC Advances,2020,10(3):1281-1286. doi: 10.1039/C9RA06729A
    [50] RODRIGUES J, PEREIRA S O, TEIXEIRA S S, et al. Insights into the photoluminescence properties of gel-like carbon quantum dots embedded in poly(methyl methacrylate) polymer[J]. Materials Today Communications,2019,18:32-38. doi: 10.1016/j.mtcomm.2018.10.014
    [51] WU S S, LI W, ZHOU W, et al. Large-scale one-step synthesis of carbon dots from yeast extract powder and construction of carbon dots/PVA fluorescent shape memory material[J]. Advanced Optical Materials,2018,6(7):1701150. doi: 10.1002/adom.201701150
    [52] YUAN B, GUAN S, SUN X, et al. Highly efficient carbon dots with reversibly switchable green-red emissions for trichromatic white light-emitting diodes[J]. ACS Applied Materials & Interfaces,2018,10(18):16005-16014.
    [53] SIDDIQUE A B, SINGH V P, PRAMANICK A K, et al. Amorphous carbon dot and chitosan based composites as fluorescent inks and luminescent films[J]. Materials Chemistry and Physics,2020,249:122984. doi: 10.1016/j.matchemphys.2020.122984
    [54] BHATTACHARYA S, PHATAKE R S, NABHA BARNEA S, et al. Fluorescent self-healing carbon dot/polymer gels[J]. ACS Nano,2019,13(2):1433-1442.
    [55] DING Y F, ZHENG J X, WANG J L, et al. Direct blending of multicolor carbon quantum dots into fluorescent films for white light emitting diodes with an adjustable correlated color temperature[J]. Journal of Materials Chemistry C,2019,7(6):1502-1509. doi: 10.1039/C8TC04887H
    [56] WANG J, FENG Z, WANG Y, et al. Efficient resistance against solid-state quenching of carbon dots towards white light emitting diodes by physical embedding into silica[J]. Carbon,2018,126:426-436. doi: 10.1016/j.carbon.2017.10.041
    [57] WANG X F, WANG G G, LI J B, et al. Towards high-powered remote WLED based on flexible white-luminescent polymer composite films containing S, N co-doped graphene quantum dots[J]. Chemical Engineering Journal,2018,336:406-415. doi: 10.1016/j.cej.2017.12.056
    [58] ZHU Q, ZHANG L, VAN VLIET K, et al. White light-emitting multistimuli-responsive hydrogels with lanthanides and carbon dots[J]. ACS Applied Materials & Interfaces,2018,10(12):10409-10418.
    [59] CHEN J, LIU W, MAO L H, et al. Synthesis of silica-based carbon dot/nanocrystal hybrids toward white LEDs[J]. Journal of Materials Science,2014,49(21):7391-7398. doi: 10.1007/s10853-014-8413-y
    [60] LI C X, YU C, WANG C F, et al. Facile plasma-induced fabrication of fluorescent carbon dots toward high-performance white LEDs[J]. Journal of Materials Science,2013,48(18):6307-6311. doi: 10.1007/s10853-013-7430-6
    [61] 刘兴华, 王军丽, 王亚玲, 等. 多色荧光碳点调控及其应用[J]. 材料工程, 2020, 48(4):36-45.

    LIU Xinghua, WANG Junli, WANG Yaling, et al. Adjusting of multicolor fluorescence carbon dots and their application[J]. Journal of Materials Engineering,2020,48(4):36-45(in Chinese).
    [62] ZHOU S, SUI Y, ZHU X, et al. Study and comparison on purification methods of multicolor emission carbon dots[J]. Chemistry an Asian Journal,2021,16(4):348-354. doi: 10.1002/asia.202001352
    [63] WANG B, YU J, SUI L, et al. Rational design of multi-color-emissive carbon dots in a single reaction system by hydrothermal[J]. Advanced Science,2021,8(1):2001453. doi: 10.1002/advs.202001453
    [64] MIAO X, QU D, YANG D, et al. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization[J]. Advanced Materials,2018,30(1):1704740. doi: 10.1002/adma.201704740
    [65] QIN Z, WANG W, WEN M, et al. Multicolor emissive sulfur, nitrogen co-doped carbon dots and their application in ion detection and solid lighting[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2020,229:117859. doi: 10.1016/j.saa.2019.117859
    [66] LIU J, LI R, YANG B. Carbon dots: A new type of carbon-based nanomaterial with wide applications[J]. ACS Central Science,2020,6(12):2179-2195. doi: 10.1021/acscentsci.0c01306
    [67] MENG X, CHANG Q, XUE C, et al. Full-colour carbon dots: From energy-efficient synthesis to concentration-dependent photoluminescence properties[J]. Chemical Communications,2017,53(21):3074-3077. doi: 10.1039/C7CC00461C
    [68] MA P P, SUN X B, PAN W, et al. Green and orange emissive carbon dots with high quantum yields dispersed in matrices for phosphor-based white LEDs[J]. ACS Sustainable Chemistry & Engineering,2020,8(8):3151-3161.
    [69] MADHU M, CHEN T H, TSENG W L. White-light emission of single carbon dots prepared by hydrothermal carbonization of poly(diallyldimethylammonium chloride): Applications to fabrication of white-light-emitting films[J]. Journal of Colloid and Interface Science,2019,556:120-127. doi: 10.1016/j.jcis.2019.08.049
    [70] FENG X, JIANG K, ZENG H, et al. A facile approach to solid-state white emissive carbon dots and their application in UV-excitable and single-component-based white LEDs[J]. Nanomaterials,2019,9(5):725. doi: 10.3390/nano9050725
    [71] ZHENG D, LI A, ZHANG M, et al. An excitation-dependent ratiometric dual-emission strategy for the large-scale enhancement of fluorescent tint control[J]. Nanoscale,2020,12(24):12773-12778. doi: 10.1039/D0NR01882A
    [72] MENG T, YUAN T, LI X, et al. Ultrabroad-band, red sufficient, solid white emission from carbon quantum dot aggregation for single component warm white light emitting diodes with a 91 high color rendering index[J]. Chemical Communications,2019,55(46):6531-6534. doi: 10.1039/C9CC01794A
    [73] ZHU J, BAI X, ZHAI Y, et al. Carbon dots with efficient solid-state photoluminescence towards white light-emitting diodes[J]. Journal of Materials Chemistry C,2017,5(44):11416-11420. doi: 10.1039/C7TC04155A
    [74] AHMAD K, PAL A, PAN U N, et al. Synthesis of single-particle level white-light-emitting carbon dots via a one-step microwave method[J]. Journal of Materials Chemistry C,2018,6(25):6691-6697. doi: 10.1039/C8TC01276H
    [75] GUAN Q W, SU R G, ZHANG M R, et al. Highly fluorescent dual-emission red carbon dots and their applications in optoelectronic devices and water detection[J]. New Journal of Chemistry,2019,43(7):3050-3058. doi: 10.1039/C8NJ06074F
    [76] WANG L, LI W, YIN L, et al. Full-color fluorescent carbon quantum dots[J]. Science Advances,2020,6(40):eabb6772. doi: 10.1126/sciadv.abb6772
    [77] YUAN T, YUAN F, LI X, et al. Fluorescence-phosphorescence dual emissive carbon nitride quantum dots show 25% white emission efficiency enabling single-component WLEDs[J]. Chemical Science,2019,10(42):9801-9806. doi: 10.1039/C9SC03492G
    [78] WANG Z, LIU Y, ZhEN S, et al. Gram-scale synthesis of 41% efficient single-component white-light-emissive carbonized polymer dots with hybrid fluorescence/phosphorescence for white light-emitting diodes[J]. Advanced Science,2020,7(4):1902688. doi: 10.1002/advs.201902688
    [79] HAN B, JIANG J, YAN Q, et al. One-step straightfoward solid synthesis of high yield white fluorescent carbon dots for white light emitting diodes[J]. Chinese Chemical Letters,2021,32(2):1-3.
    [80] LI Q, LI Y, MENG S, et al. Achieving 46% efficient white-light emissive carbon dot-based material by enhancing phosphorescence for single-component white-light-emitting diodes [J]. Journal of Materials Chemistry C, 2021(21): 6796-6801.
    [81] LI X, LAU S P, TANG L, et al. Multicolour light emission from chlorine-doped graphene quantum dots[J]. Journal of Materials Chemistry C,2013,1(44):7308-7313. doi: 10.1039/c3tc31473a
    [82] LI W, GUO H, LI G, et al. White luminescent single-crystalline chlorinated graphene quantum dots[J]. Nanoscale Horizons,2020,5(6):928-933. doi: 10.1039/D0NH00053A
    [83] KIM Y H, VISWANATH N S M, UNITHRATTIL S, et al. Phosphor plates for high-power LED applications: Challenges and opportunities toward perfect lighting[J]. ECS Journal of Solid State Science and Technology,2017,7(1):R3134.
    [84] ZHANG H, ZHANG H, PAN A, et al. Rare Earth-free luminescent materials for WLEDs: Recent progress and perspectives[J]. Advanced Materials Technologies,2021,6(1):2000648. doi: 10.1002/admt.202000648
    [85] CHO J, PARK J H, KIM J K, et al. White light-emitting diodes: History, progress, and future[J]. Laser & Photonics Reviews,2017,11(2):1600147.
    [86] HAN Z, WANG K, DU F, et al. High efficiency red emission carbon dots based on phenylene diisocyanate for trichromatic white and red LEDs[J]. Journal of Materials Chemistry C,2018,6(36):9631-9635. doi: 10.1039/C8TC03497D
    [87] KIM T H, WHITE A R, SIRDAARTA J P, et al. Yellow-emitting carbon nanodots and their flexible and transparent films for white LEDs[J]. ACS Applied Materials & Interfaces,2016,8(48):33102-33111.
    [88] ZHANG Y, ZHUO P, YIN H, et al. Solid-state fluorescent carbon dots with aggregation-induced yellow emission for white light-emitting diodes with high luminous efficiencies[J]. ACS Applied Materials & Interfaces,2019,11(27):24395-24403.
    [89] YIN L, ZHOU J, LI W, et al. Yellow fluorescent graphene quantum dots as a phosphor for white tunable light-emitting diodes[J]. RSC Advances,2019,9(16):9301-9307. doi: 10.1039/C8RA10353D
    [90] ZHANG Y, YUAN R, HE M, et al. Multicolour nitrogen-doped carbon dots: tunable photoluminescence and sandwich fluorescent glass-based light-emitting diodes[J]. Nanoscale,2017,9(45):17849-17858. doi: 10.1039/C7NR05363K
    [91] DU X Y, WANG C F, WU G, et al. The rapid and large-scale production of carbon quantum dots and their integration with polymers[J]. Angewandte Chemie International Edition,2021,60(16):8585-8595. doi: 10.1002/anie.202004109
    [92] 柳丝婉, 韩秋漪, 李福生, 等. 全光谱白光LED研究进展[J]. 光源与照明, 2019(2):14-19.

    LIU Siwan, HAN Qiuyi, LI Fusheng, et al. Research progress of full spectrum white LED[J]. Lamps and Lighting,2019(2):14-19(in Chinese).
    [93] 陈晓霞, 张霞, 刘荣辉, 等. 全光谱LED照明用荧光粉发展现状及趋势[J]. 中国工程科学, 2020, 22(2):71-78.

    CHEN Xiaoxia, ZHANG Xia, LIU Ronghui, et al. Current situation and trend of the phosphors for full spectrum LED lighting[J]. Strategic Study of CAE,2020,22(2):71-78(in Chinese).
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  907
  • HTML全文浏览量:  422
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-06
  • 修回日期:  2021-05-24
  • 录用日期:  2021-06-02
  • 网络出版日期:  2021-06-08
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回