留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁性金属有机框架复合材料在生物分析中的应用

关桦楠 彭勃 薛悦 吴巧艳 张悦

关桦楠, 彭勃, 薛悦, 等. 磁性金属有机框架复合材料在生物分析中的应用[J]. 复合材料学报, 2022, 39(4): 1547-1558. doi: 10.13801/j.cnki.fhclxb.20210607.002
引用本文: 关桦楠, 彭勃, 薛悦, 等. 磁性金属有机框架复合材料在生物分析中的应用[J]. 复合材料学报, 2022, 39(4): 1547-1558. doi: 10.13801/j.cnki.fhclxb.20210607.002
GUAN Hua'nan, PENG Bo, XUE Yue, et al. Application of magnetic metal organic framework composites in bioanalysis[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1547-1558. doi: 10.13801/j.cnki.fhclxb.20210607.002
Citation: GUAN Hua'nan, PENG Bo, XUE Yue, et al. Application of magnetic metal organic framework composites in bioanalysis[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1547-1558. doi: 10.13801/j.cnki.fhclxb.20210607.002

磁性金属有机框架复合材料在生物分析中的应用

doi: 10.13801/j.cnki.fhclxb.20210607.002
基金项目: 国家自然科学基金(31871747;31201376;31370649);黑龙江省自然科学基金(C2016034);黑龙江省普通本科高等学校青年创新人新才培养计划(UNPYSCT-2016060);中国博士后基金(2014T70304;2013M531009);黑龙江省博士后资助项目(LBH-Z13002);哈尔滨商业大学科研项目(17XN026);哈尔滨商业大学大学生创新创业训练计划项目(201810240080)
详细信息
    通讯作者:

    关桦楠,博士,教授,博士生导师,研究方向为食品安全快速检测分析 E-mail:hsdghn@163.com

  • 中图分类号: TS207.3

Application of magnetic metal organic framework composites in bioanalysis

  • 摘要: 金属-有机框架(MOFs)是由金属离子或团簇和有机配体,通过配位键自行组装形成的具有多孔结构的有机-无机杂化材料。由于它们具有框架结构可调、高孔隙率、化学稳定性良好、可再生性和合成过程简单等优点而广泛应用于小分子的吸附分离、催化化学反应、催化降解、富集物质、氧化还原反应等诸多领域。磁性金属有机框架(MMOFs)是在金属有机框架的基础上引进磁性金属粒子,极大地改良并优化了其原有的性能,丰富了金属有机框架的研究内容,拓宽了金属有机框架在食品、农药、生物分析中的应用。本文以磁性金属有机框架为研究对象,对其在生物分析中的应用进行了系统论述,在此基础上总结了当前MMOFs材料在该领域中存在的局限,并对研究新趋向提出了展望。

     

  • 图  1  Fe3O4-COOH@MIL-101复合物的合成路线及利用Fe3O4-COOH@MIL-101复合物快速简便富集细胞裂解物中生物标志物的流程图[33]

    Figure  1.  Synthesis route of Fe3O4-COOH@MIL-101 composites and the flowchart of fast and convenient enrichment of biomarkers from cell lysates using Fe3O4-COOH@MIL-101 composites[33]

    BDC—Phthalic acid; MALDI-TOF MS—Matrix-assisted laser desorption/ionization time of flight mass spectrometry

    图  2  制备Fe3O4@MIL(Fe/Ti)纳米粒子的合成程序示意图 (a) 和使用Fe3O4@MIL(Fe/Ti)纳米粒子和磁分离选择性富集磷酸化肽的典型过程 (b)[36]

    Figure  2.  Schematic illustration of the synthetic procedure for the preparation of Fe3O4@MIL(Fe/Ti) nanoparticles (a) and typical process for selective enrichment of phosphorylated peptides using Fe3O4@MIL(Fe/Ti) nanoparticles and magnetic separation (b)[36]

    MAA—Methacrylic acid; TEOS—Tetraethyl orthosilicate

    图  3  米诺环素(MC)在Fe3O4@MIL-68(Al)上的吸附机制[39]

    Figure  3.  Adsorption mechanisms of minocyline (MC) on Fe3O4@MIL-68(Al)[39]

    图  4  漆酶在Fe3O4-NH2@MIL-101(Cr)上的固定及其在去除2,4-二氯苯酚中的应用[46]

    Figure  4.  Laccase immobilization on Fe3O4-NH2@MIL-101(Cr) and the application for the removal of 2,4-dichlorophenol[46]

    表  1  磁性金属有机框架(MMOFs)材料的应用

    Table  1.   Application of magnetic metal organic framework (MMOFs) materials

    MMOFsAnalytical substanceLimit of detectionReal sampleAnalysis methodRef.
    Fe3O4@SiO2/ZIF-8 Bisphenols 10-15 ng·L−1 Water and plastic packaging of food and drinks MSPE-HPLC [14]
    Fe3O4/g-C3N4/HKUST-1 Ochratoxin A 5.0-160.0 ng·g−1 Corn FLD [15]
    Fe3O4@MIL-100(Fe) Non-steroidal anti-inflammatory drugs(NSAIDs) 0.02-0.09 µg·L−1 Water UPLC-MS/MS [16]
    Fe3O4@TMU-8 Cu2+ 0.3-1 mg·L−1 Tomato ICP-AES [17]
    M-MOF/β-CD Prochloraz and triazole fungicides 0.25-1.0 μg·L−1 Tomatoes and lettuce vegetables HPLC-MS/MS [42]
    Fe3O4@PDA@ZIF-8 Endogenous peptide 15 fmol HSA tryptic digest MALDI-TOF MS [52]
    Fe3O4@A-TpBD@NH2-
    MIL-125(Ti)
    Endocrine-disrupting chemicals 0.37-0.85 μg·L−1 Milk HPLC/MS/MS [53]
    MMOF Ampicillin 0.29 mg/L Cow milk UAMSPE-HPLC-UV [54]
    Fe3O4-NH2@MIL-101 Sudan dyes 0.01-25 μg·mL−1 Tomato sauce HPLC-DAD [55]
    Fe3O4@TMU-24 Plasticizer compounds 0.5-250 μg·mL−1 Drinks GC-FID [56]
    Notes: MSPE-HPLC—Magnetic-solid phase extraction high-performance liquid chromatography; FLD—Fraunhofer line discriminator; UPLC-MS/MS—Ultra performance liquid chromatography tandem mass spectrometry; ICP-AES—Inductively coupled plasma-atomic emission spectrometry; HPLC-MS/MS—High performance liquid chromatography tandem mass spectrometry; HPLC/MS/MS—High performance liquid chromatography/tandem mass spectrometry; UAMSPE-HPLC-UV—Magnetic-solid phase extraction high-performance liquid chromatography-ultra violet; HPLC-DAD—High-performance liquid chromatographydiode array detection; GC-FID—Gas chromatography-flame ionization detector; PDA—Polydopamine; A-TpBD—4-aminobenzoic acid- 1,3,5-triformylphloroglucinol-Benzidine.
    下载: 导出CSV
  • [1] ZHU Q X, LEI M, WU Y L, et al. Magnetic solid phase extraction of typical polycyclic aromatic hydrocarbons from environmental water samples with metal organic framework MIL-101(Cr) modified zero valent iron nano-particles[J]. Journal of Chromatography A,2017,1487:22-29. doi: 10.1016/j.chroma.2017.01.046
    [2] HUSSAIN M Z, YANG Z X, LINDEN B, et al. Surface functionalized N-C-TiO2/C nanocomposites derived from metal-organic framework in water vapour for enhanced photocatalytic H2 generation[J]. Journal of Energy Chemistry,2021,57:485-495. doi: 10.1016/j.jechem.2020.08.048
    [3] WANG G H, LEI Y Q, SONG H C. MOFzyme: Intrinsic protease-like activity of Cu-MOF[J]. Scientific Reports,2014,4:6759.
    [4] ZHAO M T, DENG K, HE L C, et al. Core-shell palladium nanoparticle@metal-organic frameworks as multifunctional catalysts for cascade reactions[J]. Journal of the American Chemical Society, 2014, 136(5): 1738-1741.
    [5] DARGAHI R, EBAHIMZADEH H, ASGHARINEZHAD A A, et al. Dispersive magnetic solid-phase extraction of phthalate esters from water samples and human plasma based on a nanosorbent composed of MIL-101(Cr) metal-organic framework and magnetite nanoparticles before their determination by GC-MS[J]. Journal of Separation Science,2018,41:948-957. doi: 10.1002/jssc.201700700
    [6] ZHAO Q, WANG C, WANG H F, et al. A mass-producible integrative structure Pt alloy oxygen reduction catalyst synthesized with atomically dispersive metal-organic framework precursors[J]. Journal of Colloid and Interface Science,2021,583:351-361. doi: 10.1016/j.jcis.2020.09.078
    [7] LI H H, NIU Z, HAN T, et al. A microporous lanthanide metal-organic framework containing channels: Synthesis, structure, gas adsorption and magnetic properties[J]. Science China Chemistry,2011,54(9):1423-1429. doi: 10.1007/s11426-011-4356-1
    [8] WANG C H, GAO J, TAN H L. Integrated antibody with catalytic metal-organic framework for colorimetric immunoassay[J]. ACS Applied Materials & Interfaces,2018,10:25113-25120.
    [9] XU S S, LIU R Q, SHI X R, et al. A dual CoNi MOF nanosheet/nanotube assembled on carbon cloth for high performance hybrid supercapacitors[J]. Electrochimica Acta,2020,342:136124. doi: 10.1016/j.electacta.2020.136124
    [10] NIU H Y, ZHENG Y, WANG S H, et al. Continuous generation of hydroxyl radicals for highly efficient elimination of chlorophenols and phenols catalyzed by heterogeneous Fenton-like catalysts yolk/shell Pd@Fe3O4@metal organic frameworks[J]. Journal of Hazardous Materials,2018,346:174-183. doi: 10.1016/j.jhazmat.2017.12.027
    [11] LI L N, CHEN Y L, YANG L, et al. Recent advances in applications of metal-organic frameworks for sample preparation in pharmaceutical analysis[J]. Coordination Chemistry Reviews,2020,411:213235. doi: 10.1016/j.ccr.2020.213235
    [12] NAJMSH A, MASOUD B, DARIUSH M, et al. Fabrication of CuWO4/Bi2S3/ZIF-67 MOF: A novel double Z-scheme ternary heterostructure for boosting visible-light photodegradation of antibiotics[J]. Chemosphere,2020,251:126453. doi: 10.1016/j.chemosphere.2020.126453
    [13] LI Y, JIANG B, HUANG Y D. Constructing nanosheet-like MOF on the carbon fiber surfaces for improving the interfacial properties of carbo fiber/epoxy composites[J]. Applied Surface Science,2020,514:14587.
    [14] LIU J F, QIU H J, ZHANG F, et al. Zeolitic imidazolate framework-8 coated Fe3O4@SiO2 composites for magnetic solid-phase extraction of bisphenols[J]. New Journal of Chemistry,2020,44:5324-5332. doi: 10.1039/D0NJ00006J
    [15] HU S, OUYANG W, GUO L, et al. Facile synthesis of Fe3O4/g-C3N4/HKUST-1 composites as a novel biosensor platform for ochratoxin A[J]. Biosensors and Bioelectronics,2017,92:718-723. doi: 10.1016/j.bios.2016.10.006
    [16] LIU S Y, LI S, YANG W, et al. Magnetic nanoparticle of metal organic framework with core-shell structure as an adsorbent for magnetic solid phase extraction of nonsteroidal anti-inflammatory drugs[J]. Talanta,2019,194:514-521. doi: 10.1016/j.talanta.2018.10.037
    [17] SAFARI M, YAMINI Y, MASOOMI Y Y. Magnetic metal-organic frameworks for the extraction of trace amounts of heavy metal ions prior to their determination by ICP-AES[J]. Microchimica Acta,2017,184(5):1555-1564. doi: 10.1007/s00604-017-2133-3
    [18] LIU J, YANG F, ZHANG Q L, et al. Construction of hierarchical Fe3O4@HKUST-1/MIL-100(Fe) microparticles with large surface area through layer-by-layer deposition and epitaxial growth methods[J]. Inorganic Chemistry,2019,58(6):3564-3568. doi: 10.1021/acs.inorgchem.8b03103
    [19] YAMINI Y, SAFARI M. Magnetic Zink-based metal organic framework as advance and recyclable adsorbent for the extraction of trace pyrethroids[J]. Microchemical Journal,2019,146:134-141. doi: 10.1016/j.microc.2018.12.059
    [20] DU F Y, SUN L S, TAN W, et al. Magnetic stir cake sorptive extraction of trace tetracycline antibiotics in food samples: Preparation of metal-organic framework-embedded polyHIPE monolithic composites, validation and application[J]. Analytical and Bioanalytical Chemistry,2019,411(10):2239-2248. doi: 10.1007/s00216-019-01660-1
    [21] LI C Y, LIU J M, WANG Z H, et al. Integration of Fe3O4@UiO-66-NH2@MON core-shell structured adsorbents for specific preconcentration and sensitive determination of aflatoxins against complex sample matrix[J]. Journal of Hazardous Materials,2019:121348.
    [22] TAN P, XIE X Y, LIU X Q, et al. Fabrication of magnetically responsive HKUST-1/Fe3O4 composites by dry gel conversion for deep desulfurization and denitrogenation[J]. Journal of Hazardous Materials,2017,321:344-352. doi: 10.1016/j.jhazmat.2016.09.026
    [23] BELLUSCI M, GUGLIELMI P, MASI A, et al. Magnetic metal-organic framework composite by fast and facile mechanochemical process[J]. Inorganic chemistry,2018,57(4):1806-1814. doi: 10.1021/acs.inorgchem.7b02697
    [24] CHEN L J, DING X, HUO J, et al. Facile synthesis of magnetic macroporous polymer/MOF composites as separable catalysts[J]. Journal of Materials Science,2019,54(1):370-382. doi: 10.1007/s10853-018-2835-x
    [25] PAREEK A, JOSHI R, GUPTA K J, et al. Sensing and signalling in plant stress responses: Ensuring sustainable food security in an era of climate change[J]. New Phytologist,2020,228(3):823-827. doi: 10.1111/nph.16893
    [26] DONG Y C, LI F T, WANG Y. Low-dimension nanomaterial-based sensing matrices for antibiotics detection: A mini review[J]. Frontiers in Chemistry,2020,8:551. doi: 10.3389/fchem.2020.00551
    [27] XIAO D F, JIE Z S, MA Z Y, et al. Fabrication of homogeneous waffle-like silver composite substrate for Raman determination of trace chloramphenicol[J]. Mikrochimica Acta,2020,187(11):285-291.
    [28] ZHANG Q C, ZHOU Q Q, YANG L, et al. Covalently bonded aptamer-functionalised magnetic mesoporous carbon for high-efficiency chloramphenicol detection[J]. Journal of Separation Science,2020,43(13):2610-2618. doi: 10.1002/jssc.201901189
    [29] WU C Y, LIAO Y B, ZHU Y Y, et al. Study on chloramphenicol bionic colorimetric sensor based on aptamer probe, a magnetic metal-organic framework compound[J]. Chinese Journal of Analytical Chemistry,2016,44(12):1820-1827.
    [30] MAZHANIA M, ALULAB M T, MURAPE D. Development of a cysteine sensor based on the peroxidase-like activity of AgNPs@Fe3O4 core-shell nanostructures[J]. Analytica Chimica Acta,2020,1107:193-202. doi: 10.1016/j.aca.2020.02.021
    [31] KARAMI Z, AKRARI A B. Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties[J]. Journal of Food Science and Technology,2019,56(2):535-547. doi: 10.1007/s13197-018-3549-4
    [32] WEN Z Y, HE J H, TAO H Y, et al. PepBDB: A comprehensive structural database of biological peptide-protein interactions[J]. Bioinformatics,2019,35(1):175-177. doi: 10.1093/bioinformatics/bty579
    [33] WEI J P, QIAO B, SONG W J, et al. Synthesis of magnetic framework composites for the discrimination of Escherichia coli at the strain level[J]. Analytica Chimica Acta,2015,868:36-44. doi: 10.1016/j.aca.2015.02.018
    [34] ZHAO Y M, ZHANG Q Q, ZHANG L Q, et al. Preparation of mesoporous carbon material derived from metal-organic frameworks and its application in selective capture of endogenous peptides from human serum[J]. Talanta,2019,200:443-449. doi: 10.1016/j.talanta.2019.02.097
    [35] XIE Y Q, DENG C H, LI Y. Designed synthesis of ultra-hydrophilic sulfo-functionalized metal-organic frameworks with a magnetic core for highly efficient enrichment of the N-linked glycopeptides[J]. Journal of Chromatography A,2017,1508:1-6. doi: 10.1016/j.chroma.2017.05.055
    [36] CAO L C, ZHAO Y M, CHU Z Y, et al. Core-shell magnetic bimetallic MOF material for synergistic enrichment of phosphopeptides[J]. Talanta,2020,206:120165. doi: 10.1016/j.talanta.2019.120165
    [37] HAN G B, ZENG Q L, JIANG Z W, et al. Simple preparation of magnetic metal-organic frameworks composite as a “bait” for phosphoproteome research[J]. Talanta,2017,171:283-290. doi: 10.1016/j.talanta.2017.03.106
    [38] WU Y L, LIU Q J, DENG C H. L-cysteine-modified metal-organic frameworks as multifunctional probes for efficient identification of N-linked glycopeptides and phosphopeptides in human crystalline lens[J]. Analytica Chimica Acta,2019,1061:110-121. doi: 10.1016/j.aca.2019.01.052
    [39] ZHANG Y Y, LIU Q, YANG C, et al. Magnetic aluminum-based metal organic framework as a novel magnetic adsorbent for the effective removal of minocycline from aqueous solutions[J]. Environmental Pollution,2019,255(Pt 2):113226.
    [40] WANG Y, CHEN H H, TANG J, et al. Preparation of magnetic metal organic frameworks adsorbent modified with mercapto groups for the extraction and analysis of lead in food samples by flame atomic absorption spectrometry[J]. Food Chemistry,2015,181:191-197. doi: 10.1016/j.foodchem.2015.02.080
    [41] TADIARODI A, ABBASZADEH A. A magnetic nanocomposite prepared from chelator-modified magnetite (Fe3O4) and HKUST-1 (MOF-199) for separation and preconcentration of mercury(II)[J]. Microchimica Acta,2016,183(4):1391-1399. doi: 10.1007/s00604-016-1770-2
    [42] LIU G Y, LI L Y, GAO Y H, et al. A beta-cyclodextrin-functionalized magnetic metal organic framework for efficient extraction and determination of prochloraz and triazole fungicides in vegetables samples[J]. Ecotoxicology and Environmental Safety,2019,183:109546. doi: 10.1016/j.ecoenv.2019.109546
    [43] JALILIAN N, EBRAHIMZADEH H, ASGHARINEZHAD A A. A nanosized magnetic metal-organic framework of type MIL-53(Fe) as an efficient sorbent for coextraction of phenols and anilines prior to their quantitation by HPLC[J]. Microchimica Acta,2019,186(9):1-8.
    [44] MA R Y, HAO L, WANG J M, et al. Magnetic porous carbon derived from a metal-organic framework as a magnetic solid-phase extraction adsorbent for the extraction of sex hormones from water and human urine[J]. Journal of Separation Science,2016,39(18):3571-3577. doi: 10.1002/jssc.201600347
    [45] JALILIAN N, EBRAHIMZADEH H, ASGHARINEZHAD A A. Preparation of magnetite/multiwalled carbon nanotubes/metal-organic framework composite for dispersive magnetic micro solid phase extraction of parabens and phthalate esters from water samples and various types of cream for their determination with liquid chromatography[J]. Jour-nal of Chromatography A,2019,1608:460426. doi: 10.1016/j.chroma.2019.460426
    [46] WU E H, LI Y X, HUANG Q, et al. Laccase immobilization on amino-functionalized magnetic metal organic framework for phenolic compound removal[J]. Chemosphere,2019,233:327-335. doi: 10.1016/j.chemosphere.2019.05.150
    [47] ZHONG C, LEI Z X, HUANG H, et al. One-pot synthesis of trypsin-based magnetic metal-organic frameworks for highly efficient proteolysis[J]. Journal of Materials Che-mistry B,2020,8:1-7.
    [48] GAO X, CHEN H, LI Y X, et al. Determination of 17 phthalate esters in peanut oil by QuEChERS gas chromatography mass spectrometry[J]. Science and Technology of Cereals, Oils and Foods,2020,28(5):138-143.
    [49] MA W, BAI Y, LIU H W, et al. Novel surface assisted laser desorption/ionization mass spectrometry matrix and its application in biological detection[J]. Journal of Instrumental Analysis,2020,39(1):1-9.
    [50] JIN Z H, MIN Q H. Research progress of laser desorption ionization mass spectrometry imaging based on nanomaterials[J]. Chinese Journal of Analysis Laboratory,2020,39(9):993-1001.
    [51] 吴杰, 陈凌, 陈群定, 等. 基于磁性金属有机框架材料的表面辅助激光解吸离子化质谱在食用油快速鉴定中的应用[J]. 分析测试学报, 2019, 38(4):423-428. doi: 10.3969/j.issn.1004-4957.2019.04.008

    WU J, CHEN L, CHEN Q D, et al. Rapid identification of edible oils by ionization mass spectrometry with magnetic metal organic frameworks-based surface-assisted laser desorption[J]. Journal of Instrumental Analysis,2019,38(4):423-428(in Chinese). doi: 10.3969/j.issn.1004-4957.2019.04.008
    [52] ZHAO M, XIE Y Q, CHEN H M, et al. Efficient extraction of low-abundance peptides from digested proteins and simultaneous exclusion of large-sized proteins with novel hydrophilic magnetic zeolitic imidazolate frameworks[J]. Talanta,2017,167:392-397. doi: 10.1016/j.talanta.2017.02.038
    [53] YUE B, LIU J H, LI G L, et al. Synthesis of magnetic metal organic framework/covalent organic framework hybrid materials as adsorbents for magnetic solid phase extraction of four endocrine disrupting chemicals from milk samples[J]. Rapid Communications in Mass Spectrometry,2020,34(23):1-11.
    [54] BAGHERI A R, GHAEDI M. Magnetic metal organic framework for pre-concentration of ampicillin from cow milk samples[J]. Journal of Pharmaceutical Analysis,2020,10(4):93-103.
    [55] SHI X R, CHEN X L, HAO Y L, et al. Magnetic metal-organic frameworks for fast and efficient solid-phase extraction of six Sudan dyes in tomato sauce[J]. Journal of Chromatography B,2018,1086:146-152. doi: 10.1016/j.jchromb.2018.04.022
    [56] YAMINI Y, SAFARI M, MORSALI A, et al. Magnetic frame work composite as an efficient sorbent for magnetic solid-phase extraction of plasticizer compounds[J]. Journal of Chromatography A,2018,1570:38-46. doi: 10.1016/j.chroma.2018.07.069
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  886
  • HTML全文浏览量:  437
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-08
  • 修回日期:  2021-05-11
  • 录用日期:  2021-05-31
  • 网络出版日期:  2021-06-07
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回