留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚合物/无机纳米粒子复合微球化学制备的研究进展

何晓英 韩锐 李光照 王中最 陈刚 古良鸿

何晓英, 韩锐, 李光照, 等. 聚合物/无机纳米粒子复合微球化学制备的研究进展[J]. 复合材料学报, 2022, 39(2): 544-558. doi: 10.13801/j.cnki.fhclxb.20210607.001
引用本文: 何晓英, 韩锐, 李光照, 等. 聚合物/无机纳米粒子复合微球化学制备的研究进展[J]. 复合材料学报, 2022, 39(2): 544-558. doi: 10.13801/j.cnki.fhclxb.20210607.001
HE Xiaoying, HAN Rui, LI Guangzhao, et al. Research progress in chemical preparation of polymer/inorganic nanoparticle composite microspheres[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 544-558. doi: 10.13801/j.cnki.fhclxb.20210607.001
Citation: HE Xiaoying, HAN Rui, LI Guangzhao, et al. Research progress in chemical preparation of polymer/inorganic nanoparticle composite microspheres[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 544-558. doi: 10.13801/j.cnki.fhclxb.20210607.001

聚合物/无机纳米粒子复合微球化学制备的研究进展

doi: 10.13801/j.cnki.fhclxb.20210607.001
基金项目: 四川省科技计划项目(2017JY0137;2019JDTD0024;2020ZDX0029);西华大学“青年学者”支持计划项目;国家自然科学基金(51703182);四川省教育厅科研项目(17ZB0412;17ZA0370)
详细信息
    通讯作者:

    韩锐,博士,副教授,硕士生导师,研究方向为聚合物基复合材料、高分子合金、绿色高分子等  E-mail:ruihan_harry@163.com

  • 中图分类号: TB332

Research progress in chemical preparation of polymer/inorganic nanoparticle composite microspheres

  • 摘要: 聚合物/无机纳米粒子复合微球,具有良好的可设计性、流动性、热稳定性、功能基表面特性等优良的综合性能。聚合物/无机纳米粒子复合微球的形貌、粒径及分布、表面结构等可根据制备方法发生显著变化,从而影响其理化性能。本文综述了乳液聚合法、悬浮聚合法、分散聚合法、两步复合法、自组装法、物理诱导和模板辅助法等化学方法在制备聚合物/无机纳米粒子复合微球方面的研究进展,对其中涉及的多层、核-壳、功能化复合微球的制备方法也做了一定总结。最后,提出了当前在化学制备聚合物/无机纳米粒子复合微球时仍面临的问题,并进行了展望。

     

  • 图  1  SiO2@聚苯乙烯(PS)复合微球形成过程示意图 (a)[26]、乳液聚合法制备SiO2@PS复合微球的示意图 (b)[27]、乳液聚合法制备核-壳型Fe3O4@聚乙炔(PA)复合微球的示意图 (c)[29]和乳液聚合法封装Fe3O4磁性纳米粒子的示意图 (d)[32]

    Figure  1.  Schematic diagram of the formation process of SiO2@Polystyrene (PS) microspheres (a)[26], schematic diagram of preparing SiO2@PS composite microspheres by emulsion polymerization (b)[27], schematic diagram of preparing core-shell Fe3O4@polyacetylene (PA) composite microspheres by emulsion polymerization (c)[29] and schematic diagram of Fe3O4 magnetic nanoparticles encapsulated by emulsion polymerization (d)[32]

    Vi-D4—Tetramethyltetraethylene cyclotetrasiloxane; St—Styrene; NPs—Nanoparticles; OPNTU—O-(proparynyl)-N-(triethoxylsilyl) methyl carbamate

    图  2  聚甲基丙烯酸甲酯(PMMA)/CaCO3复合微球的SEM图像 (a)[36]、PMMA/CaCO3复合微球的TEM图像 ((b)~(c))[36-37]和PMMA/CaCO3复合微球形成过程示意图 (d)[36]

    Figure  2.  SEM image of PMMA/CaCO3 composite microspheres (a)[36], TEM images of PMMA/CaCO3 composite microspheres ((b)-(c))[36-37] and scheme illustration of the formation process of PMMA/CaCO3 composite microspheres (d)[36]

    图  3  聚(甲基丙烯酸硬脂酯-丙烯酸丁酯)共聚物(PSB)-SiO2复合微球的SEM和TEM图像 ((a)~(b))、PSB-SiO2复合微球的截面图 ((c)~(d)) 和PSB-SiO2复合微球的元素分布图 ((e)~(h))[52]

    Figure  3.  SEM and TEM images of poly(stearate methacrylate-butyl acrylate) copolymer (PSB)-SiO2 composite microspheres ((a)-(b)), cross section of PSB-SiO2 composite microspheres ((c)-(d)) and element mapping images of PSB-SiO2 composite microspheres ((e)-(h))[52]

    图  4  PMMA/TiO2复合微球和纯TiO2悬浮液的稳定性曲线 (a)[59]、SiO2@ PMMA核-壳型复合微球的TEM图像 (b)[61]、石墨烯(GO)@甲基丙烯酸羟乙酯(PHEMA)复合微球的6次循环效率 (c)[62]和核-壳型聚丙烯酸(PAA)/PS/SiO2多层杂化微球的TEM图像 (d)[67]

    Figure  4.  Sedimentation stability measurement of both PMMA/TiO2 and pristine TiO2 suspensions as a function of time (a)[59], TEM image of PMMA/SiO2 core-shell composite microspheres (b)[61], Efficiency of the graphene (GO)@hydroxyethyl methacrylate (PHEMA) composite after six cycles (c)[62] and TEM image of core-shell SiO2@polyacrylic acid (PAA)@PS multilayer hybrid microspheres (d)[67]

    图  5  聚苯胺(PANI)-还原氧化石墨烯(RGO)复合空心微球的制备过程示意图 (a)[79]、PANI-RGO复合空心微球的SEM图像 (b) [79]、PANI-RGO复合空心微球和PANI-RGO复合膜在电流密度为0.5 A/g下的循环性能 (c)[79]和PS@RGO核-壳微球的TEM图像 (d)[81]

    Figure  5.  Illustration of the fabrication procedure of the polyaniline (PANI)-reduced graphene oxide (RGO) hollow spheres (a)[79], SEM micrograph of PANI-RGO hollow spheres (b)[79], cycling stability of PANI-RGO hollow spheres and PANI-RGO film at a current density of 0.5 A/g (c)[79] and TEM image of the PS@RGO core-shell microspheres (d)[81]

    THF—Tetrahydrofuran; HS—Hollow sphere; LBL—Layer-by-layer

  • [1] LIU Y B, LIU J, TIAN Y, et al. Robust organic-inorganic composite films with multifunctional properties of superhydrophobicity, self-healing, and drag reduction[J]. Industrial & Engineering Chemistry Research,2019,58(11):4468-4478.
    [2] VLASENKO N V, KOCHKIN Y N, SEREBRII T G, et al. Organic-inorganic composites based on gel-type sulfonic resin KU-2-8 and zirconia: Acid and catalytic properties in the etherification reaction of iso-butylene with ethanol[J]. Industrial & Engineering Chemistry Research,2018,57(32):10859-10865.
    [3] MA Y J, CHEN L, YE Y P, et al. Preparation and tribological behaviors of a novel organic-inorganic hybrid resin bonded solid lubricating coating cured by ultraviolet radiation[J]. Progress in Organic Coatings,2019,127:348-358. doi: 10.1016/j.porgcoat.2018.11.032
    [4] GAO Y S, TEOH T W, WANG Q, et al. Electrospun organic–inorganic nanohybrids as sustained release drug delivery systems[J]. Journal of Materials Chemistry B,2017,5(46):9165-9174. doi: 10.1039/C7TB01825H
    [5] STRIANI R, CORCIONE C E, MUIA G D, et al. Durability of a sunlight-curable organic–inorganic hybrid protective coating for porous stones in natural and artificial weathering conditions[J]. Progress in Organic Coatings,2016,101:1-14. doi: 10.1016/j.porgcoat.2016.07.018
    [6] YING G G, GUO S Y, CHEN L P, et al. A novel alveolate-structured organic-inorganic hybrid with high activity for photocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy,2020,45(24):13202-13210. doi: 10.1016/j.ijhydene.2020.03.060
    [7] 赵晓青. 核壳结构有机/无机复合微球的制备与应用进展[J]. 云南化工, 2020, 47(10):15-16.

    ZHAO X Q. Preparation and application of organic/inorganic composite microspheres with core-shell structure[J]. Yunnan Chemical Technology,2020,47(10):15-16(in Chinese).
    [8] HOSSEINI M G, ABOUTALEBI K. Improving the anticorro-sive performance of epoxy coatings by embedding various percentages of unmodified and imidazole modified CeO2 nanoparticles[J]. Progress in Organic Coatings: An International Review Journal,2018,12-2:56-63.
    [9] LI J, MA J, JIANG T, et al. Combined membrane emulsification with biomemetic mineralization: Designing and constructing novel organic-inorganic hybrid microspheres for enzyme immobilization[J]. Composites Science and Technology,2017,141:56-64. doi: 10.1016/j.compscitech.2017.01.008
    [10] WU G, GUO S, YIN Y, et al. Hollow microspheres of SiO2/PMMA nanocomposites: Preparation and their application in light diffusing films[J]. Journal of Inorganic and Organometallic Polymers and Materials,2018,28(6):2701-2713. doi: 10.1007/s10904-018-0905-9
    [11] ZHANG Q T, XU B, YUAN S S, et al. Fabrication and characterization of sesame ball-like CeO2:Y3+/P(St–AA) composite microspheres based on electrostatic interaction[J]. Materials Letters,2014,121:109-112. doi: 10.1016/j.matlet.2014.01.082
    [12] WEERAKKODY C, GUILD C, ACHOLA L A, et al. Effects of microwave and ultrasound exposure to microsphere particles made out of different classes of inorganic and organic materials[J]. Journal of Industrial and Engineering Chemistry,2018,65:26-30. doi: 10.1016/j.jiec.2018.04.032
    [13] LUO J, CHEN Y X, ZHENG Y, et al. Hollow graphene-polyaniline hybrid spheres using sulfonated graphene as Pickering stabilizer for high performance supercapacitors[J]. Electrochimica Acta,2018,272:221-232. doi: 10.1016/j.electacta.2018.04.011
    [14] ZHOU M J, ZHOU S Z, PANG X C, et al. Preparation of superparamagnetic gamma-Fe2O3@LS@PS copmposite latex particles through pickering miniemulsion polymerization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020,585:124040. doi: 10.1016/j.colsurfa.2019.124040
    [15] SHI X Z, DUAN J P, LU J J, et al. A novel fabrication method of network-like polyimide/silica composite microspheres with a high SiO2 content[J]. Materials Letters,2014,128(128):5-8.
    [16] WANG Z, LI S C, WU Z J. The fabrication and properties of a graphite nanosheet/polystyrene composite based on graphite nanosheets treated with supercritical water[J]. Composites Science & Technology,2015,112:50-57.
    [17] KHARISMADEWI D, HALDORAI Y, NGUYEN V H, et al. Synthesis of graphene oxide-poly(2-hydroxyethyl methacrylate) composite by dispersion polymerization in supercritical CO2: Adsorption behavior for the removal of organic dye[J]. Composite Interfaces,2016,23(7):1-21.
    [18] YE W Q, ZAHNG L, FENG G W, et al. Preparation of calcium carbonate@methyl methacrylate nanoparticles by seeded-dispersion polymerization for high performance polyvinyl chloride nanocomposites[J]. Industrial & Engineerig Chemistry Research,2015,54(30):7459-7464.
    [19] TRITSCHLER U, CÖLFEN H. Self-assembled hierarchically structured organic-inorganic composite systems[J]. Bioinspiration & Biomimetics,2016,11(3):35002.
    [20] WANG Z D, YANG M M, CHENG Y H, et al. Dielectric properties and thermal conductivity of epoxy composites using quantum-sized silver decorated core/shell structured alumina/polydopamine[J]. Composites Part A: Applied Science & Manufacturing,2018,118:302-311.
    [21] ZHANG M M, NGO T H, RABIAH N I, et al. Core-shell and asymmetric polystyrene-gold composite particles via one-step pickering emulsion polymerization[J]. Langmuir,2015,30(1):75-82.
    [22] YANG D X, WANG X X, WANG N, et al. In-situ growth of hierarchical layered double hydroxide on polydopamine-encapsulated hollow Fe3O4 microspheres for efficient removal and recovery of U(VI)[J]. Journal of Cleaner Production,2018,172(2):2033-2044.
    [23] MA Y C, YANG D Y, JIANG Q, et al. TiN-based organic-inorganic composite films with dual functions of solar control and low-emission for energy-saving coatings[J]. Materials Research Express,2020,7(6):65504. doi: 10.1088/2053-1591/ab96fd
    [24] 高山, 陕绍云, 李丹, 等. 聚苯胺/银纳米复合材料的形貌对抗菌性能的影响[J]. 高分子材料科学与工程, 2012, 28(2):60-63.

    GAO S, SHAN S Y, LI D, et al. Effect of morphologies of polyaniline/silver nanocomposite on its antibacterial properties[J]. Polymer Materials Science and Engineering,2012,28(2):60-63(in Chinese).
    [25] ATHAWALE V D, KULKARNI M A. Synthesis and perfor-mance evaluation of polyurethane/silica hybrid resins[J]. Pigment & Resin Technology,2011,40(1):49-57.
    [26] 王莉. SiO2/高分子核壳材料及交联聚合物的制备[D]. 长春: 吉林大学, 2006.

    WANG L. Synthesis of SiO2/polymer composite materials and cross-linked polymer[D]. Changchun: Jilin University, 2006(in Chinese).
    [27] ZHANG K, WU W, MENG H, et al. Pickering emulsion polymerization: Preparation of polystyrene/nano-SiO2 compo-site microspheres with core-shell structure[J]. Powder Technology,2009,190(3):393-400. doi: 10.1016/j.powtec.2008.08.022
    [28] CAI L F, WANG C L, LIN W, et al. Synthesis and adsorption properties of composite microsphere with dual-magnetic responses[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2016,55(4):75.
    [29] CHEN H Y, ZHOU J Y, DENG J P. Helical polymer/Fe3O4 NPs constructing optically active, magnetic core/shell microspheres: Preparation by emulsion polymerization and recycling application in enantioselective crystallization[J]. Polymer Chemistry,2015,7(1):125-134.
    [30] YU L H, HAO G Z, GU J J, et al. Fe3O4/PS magnetic nanoparticles: Synthesis, characterization and their application as sorbents of oil from waste water[J]. Journal of Magnetism and Magnetic Materials,2015,394:14-21. doi: 10.1016/j.jmmm.2015.06.045
    [31] 黄增芳, 瞿晓岳, 马军现. 乳液聚合制备SiO2/PMMA-DMEMA亚微米复合微球及表征[J]. 高分子材料科学与工程, 2014, 30(1):127-130.

    HUANG Z F, QU X Y, MA J X. Characterization of the submicron SiO2/PMMA-DMEMA composite microspheres prepared by the emulsion polymerization[J]. Polymer Materials Science and Engineering,2014,30(1):127-130(in Chinese).
    [32] DU H, ZHANG P, LIU F Q, et al. Trilayer composite poly(styrene/butyla-crylate/acrylic acid) terpolymer microspheres with Fe2O3 middle layer: Synthesis and characterization[J]. Polymer International,1997,43(3):274-280. doi: 10.1002/(SICI)1097-0126(199707)43:3<274::AID-PI773>3.0.CO;2-D
    [33] LI Y X, WANG Z Q, GU H, et al. A facile strategy for synthesis of multilayer and conductive organo-silica/polystyrene/polyaniline composite particles[J]. Journal of Colloid and Interface Science,2011,355(2):269-273. doi: 10.1016/j.jcis.2010.12.061
    [34] LIU B, BAI C, ZHAO D, et al. Novel ferroferric oxide/polystyrene/silver core-shell magnetic nanocomposite microspheres as regenerable substrates for surface-enhanced Raman scattering[J]. Applied Surface Science,2015,364:628-635.
    [35] KUMAR M J K, KALATHI J T. Interface dominated dielectric response of PS-Fe3O4 patchy microspheres[J]. Langmuir,2019,35(43):13923-13933.
    [36] MA X K, ZHOU B, SHENG Y, et al. Preparation of calcium carbonate/poly(methyl methacrylate) composite microspheres by soapless emulsion polymerization[J]. Journal of Applied Polymer Science,2007,105(5):2925-2929. doi: 10.1002/app.26486
    [37] MA X K, ZHOU B, DENG Y H, et al. Study on CaCO3/PMMA nanocomposite microspheres by soapless emulsion polymerization[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects,2008,312(2-3):190-194.
    [38] DUAN Y F, FU Z X, LI Y, et al. Preparation and characterization of nano composite microspheres of polystyrene and Fe3O4 by emulsifier-free emulsion polymerization[J]. Advanced Materials Research,2013,804:123-128. doi: 10.4028/www.scientific.net/AMR.804.123
    [39] LI J Q S, WANG H, WANG Y Q. Preparation of silica/polymer hybrid nanoparticles via a semi-continuous soup-free emulsion polymerization[J]. Advanced Materials Research,2015,1120-1121:233-242. doi: 10.4028/www.scientific.net/AMR.1120-1121.233
    [40] JIANG X L, GUO W W, YOU F, et al. Enhancing the dielectric properties of polymethyl methacrylate by using low loading graphene encapsulated styrene-butyl acrylate copolymer microspheres[J]. Synthetic Metals,2020,259:116229. doi: 10.1016/j.synthmet.2019.116229
    [41] ERDEM B, SUDOL E D, DIMONIE V L, et al. Encapsulation of inorganic particles via miniemulsion polymerization. I. Dispersion of titanium dioxide particles in organic media using OLOA 370 as stabilizer[J]. Journal of Polymer Science Part A Polymer Chemistry,2000,38(24):4419-4430. doi: 10.1002/1099-0518(20001215)38:24<4419::AID-POLA110>3.0.CO;2-X
    [42] AL-GHAMDI G H, SUDOL E D, DIMONIE V L, et al. Encapsulation of titanium dioxide in styrene/nbutyl acrylate copolymer by miniemulsion polymerization[J]. Journal of Applied Polymer Science,2006,101(5):3479-3486. doi: 10.1002/app.24478
    [43] LUO Y D, DAI C A, CHIU W W. Nucleation mechanism and morphology of polystyrene/Fe3O4 latex particles via miniemulsion polymerization using AIBN as initiator[J]. Journal of Applied Polymer Science,2009,112(2):975-984. doi: 10.1002/app.29481
    [44] ZHOU J, ZHANG S W, QIAO X G, et al. Synthesis of SiO2/poly(styrene-co-butyl acrylate) nanocomposite microspheres via miniemulsion polymerization[J]. Journal of Polymer Science Part A Polymer Chemistry,2006,44(10):3202-3209. doi: 10.1002/pola.21434
    [45] WU Y F, ZHANG Y, XU J X, et al. One-step preparation of PS/TiO2 nano-composite particles via miniemulsion polymerization[J]. Journal of Colloid & Interface Science,2010,343(1):18-24.
    [46] SCHOTH A, WAGNER C, HECHT L L, et al. Structure control in PMMA/silica hybrid nanoparticles by surface functionalization[J]. Colloid & Polymer Science,2014,292(10):2427-2437.
    [47] ZHOU J, CHEN M, QIAO X G, et al. Facile preparation method of SiO2/PS/TiO2 multilayer core-shell hybrid microspheres[J]. Langmuir,2006,22(24):10175-10179. doi: 10.1021/la062220h
    [48] LI X P, LU M Y, AI S L, et al. Morphology and kinetic mechanism of facile one-step preparing TiO2/polyacrylate/TiO2 multilayer core-shell hybrid emulsion via miniemulsion polymerization[J]. Journal of Adhesion Science & Technology,2015,29(19):2049-2064.
    [49] 谢琳. 有机-无机杂化纳米复合空球的制备及性能研究[D]. 上海: 复旦大学, 2010.

    XIE L. Preparation of organic-inorganic hybrid nanocomposite hollow spheres and their properties[D]. Shanghai: Fudan University, 2010(in Chinese).
    [50] 孔丝纺, 文秀芳, 皮丕辉, 等. 磁性多孔γ-Fe2O3/P(St-DVB-MAA)聚合物微球的制备及其表征[J]. 高分子学报, 2008, 8(2):168-173. doi: 10.3321/j.issn:1000-3304.2008.02.012

    KONG S F, WEN X F, PI P H, et al. Preparation and characterizationof magneticporous γ-Fe2O3 P(St-DVB-MAA) polymer microspheres preparation and characterization of magnetic porous γ-Fe2O3/P(St-DVB-MAAA) polymer microspheres[J]. Acta Polymerrica Sinica,2008,8(2):168-173(in Chinese). doi: 10.3321/j.issn:1000-3304.2008.02.012
    [51] ZHOU S, XU J L, YONG J S, et al. Preparation of monodisperse functional polystyrene/silica microsphere compo-site via suspension polymerization method[J]. Applied Mechanics & Materials,2014,470:66-69.
    [52] DUAN Y J, BIAN F L, HUANG H J. A novel composite microsphere as a highly efficient absorbent for oils and organic solvents[J]. Polymers for Advanced Technologies,2016,27(11):1494-1500. doi: 10.1002/pat.3819
    [53] MA R, TANG W, HU P, et al. Fabrication of low-density heat-resistance polystyrene/carbon black composite microspheres used as hydraulic fracturing proppant[J]. Materials Express,2019,9(2):150-158. doi: 10.1166/mex.2019.1478
    [54] DAO T D, ERDENEDELGER G, JEONG H M. Water-dipersible graphene designed as a Pickering stabilizer for the suspension polymerization of poly(methyl methacrylate)/graphene core-shell microsphere exhibiting ultra-low percolation threshold of electrical conductivity[J]. Polymer,2014,55(18):4709-4719. doi: 10.1016/j.polymer.2014.07.038
    [55] DUAN L L, CHEN M, ZHOU S X, et al. Synthesis and characterization of poly(N-isopropylacrylamide)/silica compo-site microspheres via inverse Pickering suspension polymerization[J]. Langmuir,2009,25(6):3467-3472.
    [56] ZHOU H O, SHI T J, ZHOU X. Poly(vinyl alcohol)/SiO2 composite microsphere based on Pickering emulsion and its application in controlled drug release[J]. Journal of Biomaterials Science, Polymer Edition,2014,25(7):641-656. doi: 10.1080/09205063.2014.890919
    [57] JAMALI A, MOGHBELI M R, AMELI F, et al. Synthesis and characterization of pH-sensitive Poly(acrylamide-co-methylenebisacrylamide-co-acrylic acid) hydrogel microspheres containing silica nanoparticles: Application in enhanced oil recovery processes[J]. Journal of Applied Polymer Science,2020,137(12):48491. doi: 10.1002/app.48491
    [58] LIN Y, KE Y C, YU C C, et al. Encapsulation of anion-cation organo-montmorillonite in terpolymer microsphere: Structure, morphology, and propertyes[J]. Journal of Polymer Engineering,2020,40(4):321-332. doi: 10.1515/polyeng-2019-0291
    [59] PARK B J, SUNG J H, KIM K S, et al. Preparation and characterization of poly(methyl methacrylate) coated TiO2 nanoparticles[J]. Journal of Macromolecular Science Part B-Physics,2006,45(1):53-60. doi: 10.1080/00222340500407855
    [60] 曹康丽, 史铁钧, 曹金燕, 等. 分散聚合法制备SiO2/PAM核壳复合微球[J]. 高分子材料科学与工程, 2008, 24(4):42-45. doi: 10.3321/j.issn:1000-7555.2008.04.010

    CAO K L, SHI T J, CAO J Y, et al. Synthesis of SiO2/PAM core/shell composite microspheres by dispersion polymerization[J]. Polymer Materials Science and Engineering,2008,24(4):42-45(in Chinese). doi: 10.3321/j.issn:1000-7555.2008.04.010
    [61] 魏铭, 佘新光, 刘晓芳, 等. 分散聚合法制备PMMA/SiO2核壳型杂化微球[J]. 武汉理工大学学报, 2010, 32(10):29-32. doi: 10.3963/j.issn.1671-4431.2010.10.007

    WEI M, SHE X G, LIU X F, et al. Synthesis of SiO2/PMMA core shell hybrid microspheres by dispersion polymerization[J]. Journal of Wuhan University of Technology,2010,32(10):29-32(in Chinese). doi: 10.3963/j.issn.1671-4431.2010.10.007
    [62] KHARISMADEWI D, HALDORAI Y, NGUYEN V H, et al. Synthesis of graphene oxide-poly(2-hydroxyethyl methacrylate) composite by dispersion polymerization in supercritical CO2: Adsorption behavior for the removal of organic dye[J]. Composite Interfaces,2016,23(7):719-739. doi: 10.1080/09276440.2016.1169707
    [63] ZHANG J H, DING X B, PENG Y X, et al. Magnetic polymer microsphere with photoconductivity: Preparation and characterization of iron(III) phthalocyanine covalently bonded on to polystyrene microsphere surface[J]. Polymer International,2002,51(7):617-621. doi: 10.1002/pi.929
    [64] FAN L H, LUO Y L, CHEN Y S, et al. Preparation and characterization of Fe3O4 magnetic composite microspheres covered by a P(MAH-co-MAA) copolymer[J]. Journal of Nanoparticle Research,2009,11(2):449-458. doi: 10.1007/s11051-008-9556-z
    [65] 严海晨, 李延报. 分散聚合原位制备聚苯乙烯/氧化石墨烯复合微球[J]. 南京工业大学学报(自然科学版), 2019, 41(2):135-140.

    YAN H C, LI Y B. Situ preparation of polystyrene/graphene composite microspheres by the dispersion polymerization[J]. Journal of Nanjing Tech University (Natural Science Edition),2019,41(2):135-140(in Chinese).
    [66] HWANG D R, HONG J H, HONG C K, et al. Synthesis of positively charged silica-coated polystyrene microspheres via dispersion polymerization initiated with amphoteric initiator[J]. Journal of Dispersion Science & Technology,2010,31(2):155-161.
    [67] WANG H L, SHI T J, ZHAI L F. Preparation of core-shell poly(acrylic acid)/polystyrene/SiO2 hybrid microspheres[J]. Journal of Applied Polymer Science,2006,102(2):1729-1733. doi: 10.1002/app.24354
    [68] TISSOT I, NOVAT C, LEFEBVRE F, et al. Hybrid latex particles coated with silica[J]. Macromolecules,2001,34(17):5737-5739. doi: 10.1021/ma010278r
    [69] KIM O H, HWANG M J, RYU D W, et al. Synthesis and characterization of monodispersed core-shell/polystyrene-silica composite nanospheres as artificial dusts[J]. Journal of Nanoscience and Nanotechnology,2013,13(6):4271-4274. doi: 10.1166/jnn.2013.7004
    [70] ANGELOPOULOU A, EFTHIMIADOUA E K, BOUKOSA N, et al. A new approach for the one-step synthesis of bioactive PS vs. PMMA silica hybrid microspheres as potential drug delivery systems[J]. Colloids and Surfaces B: Biointerfaces,2014,117:322-329. doi: 10.1016/j.colsurfb.2014.02.047
    [71] KARABACAKA R B, ERDEMA M, YURDAKALB S, et al. Facile two-step preparation of polystyrene/anatase TiO2 core/shell colloidal particles and their potential use as an oxidation photocatalyst[J]. Materials Chemistry and Physics,2014,144(3):498-504. doi: 10.1016/j.matchemphys.2014.01.026
    [72] SUN X F, SUN B, GONG Q H, et al. Double-shell structural polyaniline-derived TiO2 hollow spheres for enhanced photocatalytic activity[J]. Transition Metal Chemistry,2019,44(6):555-564. doi: 10.1007/s11243-019-00312-8
    [73] CARUSO F, CARUSO R A, MÖHWALD H. Nanoengineering of inorganic and hybrid hollow spheres by colld-idal templating[J]. Science,1998,282(5391):1111-1114. doi: 10.1126/science.282.5391.1111
    [74] GUO F, ZHU Y H, YANG X L, et al. Electrostatic layer-by-layer self-assembly of PAMAM–CdS nanocomposites on MF microspheres[J]. Materials Chemistry & Physics,2007,105(2-3):315-319.
    [75] JIANG S D, TANG G, CHEN J M, et al. Biobased polyelectrolyte multilayer-coated hollow mesoporous silica as a green flame retardant for epoxy resin[J]. Journal of Hazardous Materials,2018,342:689-697. doi: 10.1016/j.jhazmat.2017.09.001
    [76] ZHAO Q C. Self-assembly of CdSe quantum dots and colloidal titanium dioxide on copolymer microspheres (PS) for CdSe/PS and TiO2/CdSe/PS submicrospheres with yolk-shell structure[J]. Applied Surface Science,2015,344:107-111. doi: 10.1016/j.apsusc.2015.03.062
    [77] 宋月英, 韩丁, 关晓林, 等. 自组装法制备磺化聚苯乙烯@Fe3O4磁性复合颗粒及其磁性能[J]. 复合材料学报, 2020, 37(6):1364-1369.

    SONG Y Y, HAN D, GUAN X L, et al. Preparation and magnetic propertyes of sulfonated polystyrene @Fe3O4 magnetic composite particles by self-assembly method[J]. Acta Materiae Compositae Sinica,2020,37(6):1364-1369(in Chinese).
    [78] ZHU L F, WANG H, SHEN X S, et al. Developing mutually encapsulating materials for versatile syntheses of multilayer metal-silica-polymer hybrid nanostructures[J]. Small,2012,8(12):1857-1862. doi: 10.1002/smll.201102670
    [79] LUO J, MA Q, GU H H, et al. Three-dimensional graphene-polyaniline hybrid hollow spheres by layer-by-layer assembly for application in supercapacitor[J]. Electrochimica Acta,2015,184:184-192.
    [80] YANG J T, YAN X H, WU M J, et al. Self-assembly between graphene s-heets and cationic poly(methyl methacrylate) (PMMA) particles: Preparation and characterization of PMMA/graphene composites[J]. Journal of Nanoparticle Research,2012,14(1):717. doi: 10.1007/s11051-011-0717-0
    [81] LI Y, XU Y, ZHOU T, et al. A method to construct perfect 3D polymer/graphene oxide core–shell microspheres via electrostatic self-assembly[J]. RSC Advances,2015,5(41):32469-32478. doi: 10.1039/C5RA01984B
    [82] LIU X B, WEN N, WANG X L, et al. A high-performance hierarchical graphene@polyaniline@graphene sandwich containing hollow structures for supercapacitor electrodes[J]. ACS Sustainable Chemistry & Engineering,2015,3(3):475-482.
    [83] ZHANG S Q, ZHU Y H, YANG X L, et al. Fabrication of core–shell latex spheres with CdS/polyelectrolyte composite multilayers[J]. Colloids & Surfaces A,2005,264(1-3):215-218.
    [84] BAI W B, YAO R J, TIAN X, et al. Sunlight highly photoactive TiO2@poly-p-phenylene composite microspheres for malachite green degradation[J]. Journal of the Taiwan Institute of Chemical Engineers,2018,87:112-116. doi: 10.1016/j.jtice.2018.03.018
    [85] YIN J L, QIAN X F, YIN J, et al. Preparation of ZnS/PS microspheres and ZnS hollow shells[J]. Materials Letters,2003,57(24-25):3859-3863. doi: 10.1016/S0167-577X(03)00217-9
    [86] BARKADE S S, PINJARI D V, SINGH A K, et al. Ultrasound assisted miniemulsion polymerization for preparation of polypyrrole−zinc oxide (PPy/ZnO) functional latex for liquefied petroleum gas sensing[J]. Industrial & Engineering Chemistry Research,2013,52(23):7704-7712.
    [87] PRADID J, KEAWWATANA W, BOONYANG U, et al. Biological properties and enzymatic degradation studies of clindamycin loaded PLA/HAp microspheres prepared from crocodile bones[J]. Polymer Bulletin,2017,74(12):5181-5194. doi: 10.1007/s00289-017-2006-2
    [88] PANIGRAHI R, SRIVASTAVA S K. Tollen’s reagent assisted synthesis of hollow polyaniline microsphere/Ag nanocomposite and its applications in sugar sensing and electromagnetic shielding[J]. Materials Research Bulletin,2015,64:33-41. doi: 10.1016/j.materresbull.2014.12.035
    [89] ZHANG S P, SONG X Z, LIU S H, et al. Template-assisted synthesized MoS2/polyaniline hollow microsphere electrode for high performance supercarpacitors[J]. Electrochimica Acta,2019,312:1-10. doi: 10.1016/j.electacta.2019.04.177
  • 加载中
图(5)
计量
  • 文章访问数:  1720
  • HTML全文浏览量:  652
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-16
  • 修回日期:  2021-05-25
  • 录用日期:  2021-05-31
  • 网络出版日期:  2021-06-07
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回