留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多材料3D打印和约束牺牲层连续功能梯度材料-结构一体化制造与性能

齐田宇 杨建军 赵佳伟 宋银宝 郭鹏飞 张冠军 兰红波

齐田宇, 杨建军, 赵佳伟, 等. 基于多材料3D打印和约束牺牲层连续功能梯度材料-结构一体化制造与性能[J]. 复合材料学报, 2022, 39(3): 1055-1067. doi: 10.13801/j.cnki.fhclxb.20210601.006
引用本文: 齐田宇, 杨建军, 赵佳伟, 等. 基于多材料3D打印和约束牺牲层连续功能梯度材料-结构一体化制造与性能[J]. 复合材料学报, 2022, 39(3): 1055-1067. doi: 10.13801/j.cnki.fhclxb.20210601.006
QI Tianyu, YANG Jianjun, ZHAO Jiawei, et al. Integrated manufacturing and performance study of continuous functionally graded materials-structures based on multi-material 3D printing and constraint sacrifice layer[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1055-1067. doi: 10.13801/j.cnki.fhclxb.20210601.006
Citation: QI Tianyu, YANG Jianjun, ZHAO Jiawei, et al. Integrated manufacturing and performance study of continuous functionally graded materials-structures based on multi-material 3D printing and constraint sacrifice layer[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1055-1067. doi: 10.13801/j.cnki.fhclxb.20210601.006

基于多材料3D打印和约束牺牲层连续功能梯度材料-结构一体化制造与性能

doi: 10.13801/j.cnki.fhclxb.20210601.006
基金项目: 山东省自然科学基金重大基础研究项目(ZR2020ZD04);山东省重点研发计划(2019GGX104060);国家自然科学基金(51775288)
详细信息
    通讯作者:

    郭鹏飞,博士,副教授,硕士生导师,研究方向为功能梯度材料增材制造 E-mail:dr2019guopf@163.com

    兰红波,博士,教授,博士生导师,研究方向为复合材料/功能梯度3D打印 E-mail:hblan99@126.com

  • 中图分类号: TB332

Integrated manufacturing and performance study of continuous functionally graded materials-structures based on multi-material 3D printing and constraint sacrifice layer

  • 摘要: 针对现有功能梯度材料制备技术存在低黏度液体难以精准控形、层间结合强度差、成形结构单一等方面的不足和局限性,提出了一种基于多材料3D打印和约束牺牲层连续功能梯度材料-结构一体化制造新工艺,实现了聚合物基连续功能梯度材料的全新制备。通过理论分析和实验研究,揭示了挤出速度、打印速度、线间距等主要工艺参数对打印连续功能梯度材料质量和性能的影响规律。利用自主搭建的实验装置制备的石墨烯/光敏树脂介电功能梯度材料(d-FGM),实现了聚合物基连续功能梯度绝缘子的一体化制造,与均质光敏树脂相比,介电常数增加了1倍,电阻率降低了93.3%,沿面电场强度提升幅值超过了14%。Al2O3/聚二甲基硅氧烷(Al2O3/PDMS)连续变刚度功能梯度材料,相较于单一PDMS材料,质量分数为40wt%的Al2O3一侧刚度增加了1倍,实现了Al2O3粉末的连续梯度分布。该3D打印工艺为聚合物基连续功能梯度材料的制备提供了一种低成本、高效率的解决方案。

     

  • 图  1  (a) 3D打印系统示意图;(b)工作原理图;(c)被动混合内部结构;(d)混合过程

    Figure  1.  (a) Sketch of 3D printing system; (b) Working principle diagram; (c) Passive mixing internal structure; (d) Mixing process

    图  2  实验装置图

    Figure  2.  Experimental device

    图  3  挤出速度对打印层厚的影响及规律:(a) 聚二甲基硅氧烷(PDMS);(b)光敏树脂

    Figure  3.  Influence of extrusion speed on layer thickness: (a) Polydimethylsiloxane (PDMS); (b) UV curable resin

    图  4  打印速度对打印层厚的影响及规律:(a) PDMS;(b)光敏树脂

    Figure  4.  Influence of printing speed on layer thickness: (a) PDMS; (b) UV curable resin

    图  5  线间距对打印层厚的影响及规律:(a) PDMS;(b)光敏树脂

    Figure  5.  Influence of line spacing on layer thickness: (a) PDMS; (b) UV curable resin

    图  6  石墨烯/光敏树脂介电功能梯度材料 (d-FGM):(a)圆台;(b)圆台截面图

    Figure  6.  Graphene/UV curable resin dielectric functionally graded material (d-FGM): (a) Round table; (b) Sectional view of round table

    图  7  石墨烯/光敏树脂d-FGM中不同石墨烯含量的介电性能变化及其规律:(a)介电常数;(b)电阻率

    Figure  7.  Dielectric properties of different graphene content in graphene/UV curable resin d-FGM: (a) Dielectric constant; (b) Resistivity

    图  8  石墨烯/光敏树脂介电功能梯度材料在不同电场强度的闪络概率变化:(a)交流电压;(b)直流电压

    Figure  8.  Variation of flashover probability with different electric field intensity for graphene/UV curable resin d-FGM: (a) AC voltage; (b) DC voltage

    图  9  Al2O3/PDMS变刚度FGM:(a)三维构件;(b)构件截面

    Figure  9.  Al2O3/PDMS variable stiffness FGM: (a) Three-dimensional components; (b) Sectional view of component

    图  10  Al2O3/PDMS功能梯度材料中Al元素分布图(亮点代表Al) (a) 及不同浓度的硬度变化及其规律 (b)

    Figure  10.  Distribution of Al elements (bright spots represent Al) (a) and hardness changes at different concentrations (b) for Al2O3/PDMS functionally graded material

    表  1  材料组分变化

    Table  1.   Change of material composition

    No.Feeding speed ratio (RIRII)
    1 RI=15 r/min
    2 RIRII=4∶1
    3 RIRII=3∶2
    4 RIRII=2∶3
    5 RIRII=1∶4
    6 RI=0 r/min
    Notes: RI—Speed of feeding module I; RII—Speed of feeding module II.
    下载: 导出CSV

    表  2  Al2O3/PDMS功能梯度材料层间拉伸对比实验数据

    Table  2.   Experimental data of interlayer tensile for Al2O3/PDMS functionally graded material

    No.Single-layer one-step curingSingle-layer two-step curing
    Max load/NInterlaminar tensile strength/MPaMax load/NInterlaminar tensile strength/MPa
    1 256.8 0.642 462.4 1.156
    2 247.2 0.618 456.3 1.141
    3 229.2 0.573 451.6 1.129
    4 220.4 0.551 445.2 1.113
    5 210.4 0.526 438.8 1.097
    6 119.2 0.498 432.8 1.082
    下载: 导出CSV
  • [1] SALEH B, JIANG J H, FATHI R, et al. 30 Years of functionally graded materials: An overview of manufacturing methods, applications and future challenges[J]. Compo-sites Part B,2020,201:108376. doi: 10.1016/j.compositesb.2020.108376
    [2] NAEBE M, SHIRVANIMOGHADDAM K. Functionally graded materials: A review of fabrication and properties[J]. Applied Materials Today,2016,5:223-245. doi: 10.1016/j.apmt.2016.10.001
    [3] LOH G H, PEI E, HARRISON D, et al. An overview of functionally graded additive manufacturing[J]. Additive Manufacturing,2018,23:34-44. doi: 10.1016/j.addma.2018.06.023
    [4] ALMASI D, SADEGHI M, LAU W J, et al. Functionally graded polymeric materials: A brif review of current fabrication methods and introduction of a novel fabrication method[J]. Materials Science & Engineering C,2016,64:102-107.
    [5] 杨昆, 张广明, 李晓强, 等. 基于电场驱动熔融喷射聚合物基复合材料高分辨率3D打印[J]. 机械工程学报, 2020, 56(23):193-202. doi: 10.3901/JME.2020.23.193

    YANG Kun, ZHANG Guangming, LI Xiaoqiang, et al. High-resolution 3D printing of polymer matrix composites based on electric-field-driven fusion jetting[J]. Journal of Mecha-nical Engineering,2020,56(23):193-202(in Chinese). doi: 10.3901/JME.2020.23.193
    [6] 胡艺伟, 李亚智, 李彪, 等. 纤维增强聚合物基复合材料熔融堆积成型技术的研究进展及产品的力学性能[J]. 复合材料学报, 2021, 38(4): 976-996.

    HU Yiwei, LI Yazhi, LI Biao, et al. 3D printed fibre-reinforced polymer composites—Review of the fused deposi-tion modeling process and mechanical performance of products [J]. Acta Materiae Compositae Sinica, 2021, 38(4): 976-996(in Chinese).
    [7] 康泽天, 周博, 薛世峰. 功能梯度形状记忆合金复合梁的力学行为[J]. 复合材料学报, 2019, 36(8):1901-1910.

    KANG Zetian, ZHOU Bo, XUE Shifeng. Mechanical behaviors of functionally graded shape memory alloy composite beam[J]. Acta Materiae Compositae Sinica,2019,36(8):1901-1910(in Chinese).
    [8] 徐仙, 陈鹏起, 台运霄, 等. 钨铜梯度材料热震过程中显微组织及热性能[J]. 复合材料学报, 2021, 38(12): 4205-4211.

    XU Xian, CHEN Pengqi , TAI Yunxiao, et al. Microstructure and thermal properties of W-Cu graded materials during thermal shock test[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4205-4211(in Chinese).
    [9] LONG J, NAND A, RAY S. Application of spectroscopy in additive manufacturing[J]. Materials,2021,14(1):203. doi: 10.3390/ma14010203
    [10] 李皓鹏, 李宁, 颜家振, 等. 多层陶瓷结构Al2O3-Fe2O3/3Y-TZP 梯度复合陶瓷的制备及性能[J]. 复合材料学报, 2019, 36(3):685-692.

    LI Haopeng, LI Ning, YAN Jiazhen, et al. Preparation and properties of Al2O3-Fe2O3/3Y-TZP gradient composite ceramics with multilayer ceramic structure[J]. Acta Materiae Compositae Sinica,2019,36(3):685-692(in Chinese).
    [11] LIM H R, KIM H S, QAZI R, et al. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment[J]. Advanced Materials,2020,32(15):1901924. doi: 10.1002/adma.201901924
    [12] WEHNER M, TRUBY R L, FITZGERALD D J, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots[J]. Nature,2016,536(7617):451-455. doi: 10.1038/nature19100
    [13] 时晓梅, 徐对功, 侯代水, 等. 聚合物梯度结构及其梯度功能复合材料研究的最新进展[J]. 高分子通报, 2011(9):71-80.

    SHI Xiaomei, XU Duigong, HOU Daishui, et al. Research progress in polymer gradient structure and functional gradient composites[J]. Polymer Bulletin,2011(9):71-80(in Chinese).
    [14] 穆中国, 罗一丁. 聚合物梯度材料的制备及应用研究[J]. 化工新型材料, 2010, 38(5):37-40. doi: 10.3969/j.issn.1006-3536.2010.05.012

    MU Zhongguo, LUO Yiding. Study on preparation and appli-cation of gradient polymer materials[J]. New Chemical Materials,2010,38(5):37-40(in Chinese). doi: 10.3969/j.issn.1006-3536.2010.05.012
    [15] 兰红波, 李涤尘, 卢秉恒. 微纳尺度3D打印[J]. 中国科学: 技术科学, 2015, 45(9):919-940. doi: 10.1360/N092014-00397

    LAN Hongbo, LI Dichen, LU Bingheng. Micro and nanoscale 3D printing[J]. SCIENTIA SINICA Technologica,2015,45(9):919-940(in Chinese). doi: 10.1360/N092014-00397
    [16] WEI C, ZHANG Z Z, CHENG D X, et al. An overview of laser-based multiple metallic material additive manufacturing: From macro-to micro-scales[J]. International Journal of Extreme Manufacturing,2021,3(1):47-70.
    [17] 程凯, 兰红波, 邹淑亭, 等. 多材料多尺度3D打印主动混合喷头的研究[J]. 中国科学: 技术科学, 2017, 47(2):149-162. doi: 10.1360/N092016-00312

    CHENG Kai, LAN Hongbo, ZOU Shuting, et al. Research on active mixing printhead for multi-material and multi-scale 3D printing[J]. SCIENTIA SINICA Technologica,2017,47(2):149-162(in Chinese). doi: 10.1360/N092016-00312
    [18] 张源值, 杨建军, 高凡, 等. PDMS/SiC功能梯度衬底3D打印制备和性能研究[J]. 中国科学: 技术科学, 2020, 50(5):593-602. doi: 10.1360/SST-2019-0324

    ZHANG Yuanzhi, YANG Jianjun, GAO Fan, et al. PDMS/SiC functionally gradient substrate fabricated by 3D printing and its performances[J]. SCIENTIA SINICA Technologica,2020,50(5):593-602(in Chinese). doi: 10.1360/SST-2019-0324
    [19] GIACHINI P A G S, GUPTA S S, WANG W, et al. Additive manufacturing of cellulose-based materials with continuous, multidirectional stiffness gradients[J]. Science Advances,2020,6(8):0929. doi: 10.1126/sciadv.aay0929
    [20] SCHWARTZ J J, BOYDSTON A J. Multimaterial actinic spatial control 3D and 4D printing[J]. Nature Communications,2019,10(1):172-196. doi: 10.1038/s41467-018-08076-y
    [21] KHATRI B, FREY M, AHMED R F, et al. Development of a multi-material stereolithography 3D printing device[J]. Micromachines,2020,11(5):532-549. doi: 10.3390/mi11050532
    [22] Institute of Electrical and Electronics Engineers. ASTM D4496-1987 Test method for DC resistance or conductance of moderately conductive materials [S]. United States: American Society for Testing and Materials International, 1987.
    [23] Institute of Electrical and Electronics Engineers. ASTM D150-1994 Test methods for AC loss characteristics and permittivity (dielectric constant) of solid electrical insulation [S]. United States: American Society for Testing and Materials International, 1994.
    [24] American Society for Testing and Materials. ASTM D3039/D3039M-2014 Standard test method for tensile properties of polymer matrix composite materials[S]. United States: American Society for Testing and Materials International, 2014.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1278
  • HTML全文浏览量:  652
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-18
  • 修回日期:  2021-04-26
  • 录用日期:  2021-05-21
  • 网络出版日期:  2021-06-02
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回