Influence of ultrasonic vibration on curing kinetics of rapid curing epoxy resin system
-
摘要: 通过非等温差示扫描量热法,结合黏度测试和傅里叶红外光谱分析,研究了不同超声波振动条件下环氧树脂体系的固化特性。基于Flynn-Wall-Ozawa/FWO、Kissinger-Akahira-Sunose/KAS和Boswell积分型动力学模型,计算了不同超声波振动下环氧树脂体系的活化能。结合Malek最大概然函数法,得到了超声振动下树脂体系的固化反应动力学方程,并与实测固化度对比进行了验证。研究表明,超声振动振幅越大,树脂体系黏度降低越明显,较小的超声波振幅振动下树脂体系活化能增大,而振幅增大后活化能有明显的降低。固化物的红外光谱分析表明,随着超声振幅的增大,羟基吸收峰减弱,表明超声效应加速了胺基加成反应或者羟基醚化反应。超声振动条件下的树脂固化反应模型符合自催化模型形式,但超声振动并不能改变树脂体系的固化反应机制。以上研究结果对设计和优化碳纤维增强树脂复合材料超声振动辅助树脂传递模塑成型(RTM)工艺具有一定的指导意义。Abstract: Using the non-isothermal differential scanning calorimetry method, the viscosity test and Fourier infrared spectrum scanning technique, the curing characteristics of epoxy resin system under ultrasonic vibration with different amplitudes were studied. Based on Flynn-Wall-Ozawa/FWO, Kissinger-Akahira-Sunose/KAS and Boswell integral kinetic models, the activation energy of resin system under various ultrasonic vibration conditions was calculated. Combined with the Malek most probable function method, the curing reaction kinetic equation of resin system under ultrasonic vibration was obtained, which was verified by experimentally recorded curing degree. Results show that the greater the ultrasonic vibration amplitude, the more obvious the reduction of viscosity of the epoxy resin system. The activation energy of resin system increases under ultrasonic vibration with smaller amplitude, and the activation energy decreases significantly when the amplitude increases. The infrared spectrum test of cured product shows that with the increase of the ultrasonic amplitude, the hydroxyl absorption peak drops, which probably due to the fact that the ultrasonic effect accelerates the amine group addition reaction or the hydroxyl etherification reaction. The resin curing reaction model under ultrasonic vibration is in agreement with the form of autocatalytic model, which shows that ultrasonic effect cannot change curing reaction mechanism of epoxy resin system. The above research results have certain guiding significance for the design and optimization of ultrasonic vibration assisted resin transfer molding (RTM) technique for manufacturing carbon fiber reinforced polymer composites.
-
Key words:
- ultrasonic vibration /
- epoxy resin /
- carbon fiber /
- FTIR analysis /
- curing reaction kinetics /
- activation energy
-
表 1 环氧树脂体系样品编号
Table 1. Sample number of epoxy resin system
Sample Epoxy sample mass/g Vibration time/s Amplitude percentage/% #01AB 55 0 — #20AB 55 45 20 #40AB 55 45 40 Notes:Take #01AB as an example, #01—Sample number; A—Resin; B—Curing agent; AB—Mixed system. 表 2 环氧树脂混合体系的DSC固化参数
Table 2. DSC curing parameters of epoxy resin mixture systems
Sample Heating rate/(℃·min−1) To/℃ Tp/℃ Te/℃ ΔHtotal/(J·g−1) #01AB 10 57.4 91.9 131.1 528.44 15 62.4 99.4 140.1 530.66 20 68.7 107.1 143 479.73 #20AB 10 50.1 86.3 135.1 476.78 15 57.3 95.4 147.2 483.54 20 56.4 95.8 146.4 474.52 #40AB 10 59.7 93.2 129.5 527.52 15 60.9 97.4 130.7 490.79 20 72.7 107.6 137.7 547.97 Notes:To, Tp, Te―Onset, peak and end temperatures of curing, respectively;ΔHtotal―Total heat of curing reaction. 表 3 不同升温速率下各环氧树脂混合体系的固化动力学参数
Table 3. Curing kinetics parameters of each epoxy resin mixture system at different heating rates
Sample Heating rate/(K·min−1) ${E_{\rm{a}} }$/(kJ·mol−1) αM αP R2 lnA m n #01AB 10 54.5 0.1898 0.4899 0.9959 17.6387 0.3494 1.4915 15 0.1995 0.5097 0.9940 17.6726 0.3512 1.4089 20 0.1895 0.5205 0.9960 17.5947 0.3408 1.4573 Mean 0.1929 0.5067 0.9953 17.6353 0.3471 1.4526 #20AB 10 71.6 0.0300 0.4697 0.9968 23.2910 0.0537 1.7357 15 0.0200 0.4706 0.9927 23.0414 0.0335 1.6394 20 0.0400 0.4600 0.9959 23.4763 0.0766 1.8374 Mean 0.0300 0.4668 0.9951 23.2696 0.0546 1.7375 #40AB 10 51.8 0.2400 0.5095 0.9896 16.7716 0.4376 1.3862 15 0.2198 0.5499 0.9977 16.9313 0.3655 1.2977 20 0.2706 0.5393 0.9830 16.9438 0.5104 1.3758 Mean 0.2435 0.5329 0.9901 16.8822 0.4378 1.3532 Notes:${E_{\rm{a}} }$―Activation energy;αM, αP―Curing degrees at the maximum values of $ {y}(\alpha ) $ and $ {z}(\alpha ) $;R2―Standard deviation;A―Pre-exponential factor;m, n―Reaction orders. -
[1] WU M, TONG X, WANG H, et al. Effect of ultrasonic vibration on adhesive bonding of CFRP/Al alloy joints grafted with silane coupling agent[J]. Polymers,2020,12(4):947. doi: 10.3390/polym12040947 [2] 姜开宇, 李豪, 左军超, 等. 超声振动对玻纤增强聚丙烯复合材料注射成型特性的影响[J]. 复合材料学报, 2015, 32(5):1330-1340.JIANG Kaiyu, LI Hao, ZUO Junchao, et al. Effects of ultrasonic vibration on injection molding characteristics of glass fiber reinforced polypropylene composites[J]. Acta Materiae Compositae Sinica,2015,32(5):1330-1340(in Chinese). [3] MASATO D, SORGATO M, LUCCHETTA G. Effect of ultrasound vibration on the ejection friction in microinjection molding[J]. The International Journal of Advanced Manufacturing Technology,2018,96(1):345-358. [4] 袁满, 何亚东, 李锐, 等. 连续纤维增强热塑性复合材料熔融浸渍模型[J]. 塑料科技, 2019, 47(7):12-17.YUAN Man, HE Yadong, LI Rui, et al. Melt impregnation model of continuous fiber reinforced thermoplastic composites[J]. Plastics Science and Technology,2019,47(7):12-17(in Chinese). [5] 徐玺涛. 超声外场下微结构注塑成型质量的研究[D]. 大连: 大连理工大学, 2020.XU Xitao. Study on microstructure injection molding qua-lity nnder ultrasonic external field[D]. Dalian: Dalian University of Technology, 2020(in Chinese). [6] 相海平. 超声波振动辅助倒装芯片下填充成型工艺基础研究[D]. 武汉: 武汉理工大学, 2017.XIANG Haiping. Fundamental research on ultrasonic vibration assisted flip chip underfill molding process[D]. Wuhan: Wuhan University of Technology, 2017(in Chinese). [7] 中国国家标准化管理委员会. 树脂浇铸体性能试验方法: GB/T 2567—2008[S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People's Republic of China. Test methods for properties of resin casting boby: GB/T 2567—2008[S]. Beijing: Standards Press of China, 2008(in Chinese). [8] 郭帅, 杨旭静, 方文俊, 等. 快速固化环氧树脂/碳纤维复合材料的性能[J]. 工程塑料应用, 2017, 45(4):28-32.GUO Shuai, YANG Xujing, FANG Wenjun, et al. Properties of rapid curing epoxy resin/carbon fiber composites[J]. Engineering Plastics Application,2017,45(4):28-32(in Chinese). [9] MUSTAFA M F, COOK W D, SCHILLER T L, et al. Curing behavior and thermal properties of TGDDM copolymerized with a new pyridine-containing diamine and with DDM or DDS[J]. Thermochimica Acta,2014,575:21-28. doi: 10.1016/j.tca.2013.09.018 [10] WAN J, LI C, FAN H, et al. Branched 1, 6-diaminohexane-derived aliphatic polyamine as curing agent for epoxy: Isothermal cure, network structure, and mechanical properties[J]. Industrial and Engineering Chemistry Research,2017,56(17):4938-4948. doi: 10.1021/acs.iecr.7b00610 [11] LI Y, LI C, SUN X S. Isothermal curing kinetics of epoxi-dized fatty acid methyl esters and triacylglycerols[J]. Journal of the American Oil Chemists’ Society,2019,96(9):1035-1045. doi: 10.1002/aocs.12260 [12] ZHAO X, HUANG Z, SONG P, et al. Effect of isophorone diamine on curing kinetics and mechanical properties of 2-ethyl-4-methylimidazole/epoxy resin crosslinked network[J]. Thermochimica Acta,2019,680:178380. [13] LIN R, ZHAO H, ZUO L, et al. Study on curing kinetics of fatty amine/epoxy resin using non-isothermal DSC method[J]. IOP Conference Series: Earth and Environmental Science,2019,252(2):022048. [14] JOUYANDEH M, PARAN S M R, JANNESARI A, et al. Protocol for nonisothermal cure analysis of thermoset composites[J]. Progress in Organic Coatings,2019,131:333-339. doi: 10.1016/j.porgcoat.2019.02.040 [15] KOGA N. Ozawa’s kinetic method for analyzing thermoanalytical curves[J]. Journal of Thermal Analysis and Calorimetry,2013,113(3):1527-1541. doi: 10.1007/s10973-012-2882-5 [16] TUDORACHI N, MUSTATA F. Curing and thermal degradation of diglycidyl ether of bisphenol A epoxy resin crosslinked with natural hydroxy acids as environmentally friendly hardeners[J]. Arabian Journal of Chemistry,2020,13(1):671-682. doi: 10.1016/j.arabjc.2017.07.008 [17] FLYNN J H. The isoconversional method for determination of energy of activation at constant heating rates[J]. Journal of Thermal Analysis,1983,27(1):95-102. doi: 10.1007/BF01907325 [18] COATS A W, REDFERN J P. Kinetic parameters from thermogravimetric data[J]. Nature,1964,201:68-69. doi: 10.1038/201068a0 [19] LIM A C R, CHIN B L F, JAWAD Z A, et al. Kinetic analysis of rice husk pyrolysis using Kissinger-Akahira-Sunose (KAS) method[J]. Procedia Engineering,2016,148:1247-1251. doi: 10.1016/j.proeng.2016.06.486 [20] BOSWELL P G. On the calculation of activation energies using a modified Kissinger method[J]. Journal of Thermal Analysis,1980,18(2):353-358. doi: 10.1007/BF02055820 [21] SONG Y, LIU M, ZHANG L, et al. Mechanistic interpretation of the curing kinetics of tetra-functional cyclosiloxanes[J]. Chemical Engineering Journal,2017,328:274-279. doi: 10.1016/j.cej.2017.07.036 [22] SENUM G I, YANG R T. Rational approximations of the integral of the Arrhenius function[J]. Journal of Thermal Analysis and Calorimetry,1977,11(3):445-447. doi: 10.1007/BF01903696 [23] MÁLEK J. The kinetic analysis of non-isothermal data[J]. Thermochimica Acta,1992,200:257-269. doi: 10.1016/0040-6031(92)85118-F