留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声振动对快速固化环氧树脂体系固化动力学特性的影响

杨旭静 张良胜 李茂君 尉志伟 方文俊

杨旭静, 张良胜, 李茂君, 等. 超声振动对快速固化环氧树脂体系固化动力学特性的影响[J]. 复合材料学报, 2022, 39(5): 2470-2481. doi: 10.13801/j.cnki.fhclxb.20210601.005
引用本文: 杨旭静, 张良胜, 李茂君, 等. 超声振动对快速固化环氧树脂体系固化动力学特性的影响[J]. 复合材料学报, 2022, 39(5): 2470-2481. doi: 10.13801/j.cnki.fhclxb.20210601.005
YANG Xujing, ZHANG Liangsheng, LI Maojun, et al. Influence of ultrasonic vibration on curing kinetics of rapid curing epoxy resin system[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2470-2481. doi: 10.13801/j.cnki.fhclxb.20210601.005
Citation: YANG Xujing, ZHANG Liangsheng, LI Maojun, et al. Influence of ultrasonic vibration on curing kinetics of rapid curing epoxy resin system[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2470-2481. doi: 10.13801/j.cnki.fhclxb.20210601.005

超声振动对快速固化环氧树脂体系固化动力学特性的影响

doi: 10.13801/j.cnki.fhclxb.20210601.005
基金项目: 国家自然科学基金(51875188;51905163)
详细信息
    通讯作者:

    李茂君,博士,副教授,博士生导师,研究方向为复合材料加工与制造 E-mail:maojunli@hnu.edu.cn

  • 中图分类号: TB332

Influence of ultrasonic vibration on curing kinetics of rapid curing epoxy resin system

  • 摘要: 通过非等温差示扫描量热法,结合黏度测试和傅里叶红外光谱分析,研究了不同超声波振动条件下环氧树脂体系的固化特性。基于Flynn-Wall-Ozawa/FWO、Kissinger-Akahira-Sunose/KAS和Boswell积分型动力学模型,计算了不同超声波振动下环氧树脂体系的活化能。结合Malek最大概然函数法,得到了超声振动下树脂体系的固化反应动力学方程,并与实测固化度对比进行了验证。研究表明,超声振动振幅越大,树脂体系黏度降低越明显,较小的超声波振幅振动下树脂体系活化能增大,而振幅增大后活化能有明显的降低。固化物的红外光谱分析表明,随着超声振幅的增大,羟基吸收峰减弱,表明超声效应加速了胺基加成反应或者羟基醚化反应。超声振动条件下的树脂固化反应模型符合自催化模型形式,但超声振动并不能改变树脂体系的固化反应机制。以上研究结果对设计和优化碳纤维增强树脂复合材料超声振动辅助树脂传递模塑成型(RTM)工艺具有一定的指导意义。

     

  • 图  1  超声波振动加载示意图

    Figure  1.  Schematic diagram of ultrasonic vibration treatment

    图  2  AM8931树脂体系在DSC测试中的3种升温程序

    Figure  2.  Three heating procedures of AM8931 resin system in the DSC test

    图  3  树脂浇铸件模具

    Figure  3.  Mold for resin castings

    图  4  超声振动条件下环氧树脂混合体系的FTIR图谱

    Figure  4.  FTIR spectra of epoxy resin mixture systems treated with ultrasonic vibration

    图  5  环氧树脂混合体系的固化机制

    Figure  5.  Curing mechanism of epoxy resin mixture system

    图  6  不同超声振幅振动下环氧树脂混合体系的初始黏度

    Figure  6.  Initial viscosity of epoxy resin mixture systems under different ultrasonic amplitude vibrations

    图  7  不同升温速率β下3组环氧树脂混合体系的非等温DSC曲线

    Figure  7.  Isothermal DSC curves of three groups of epoxy resin mixture systems at different heating rates β

    图  8  不同升温速率下#01AB、#20AB和#40AB三组环氧树脂混合体系的非等温固化动力学曲线

    Figure  8.  Non-isothermal kinetics profiles for three groups of epoxy resin mixture systems named #01AB, #20AB, #40AB systems at different heating rates

    图  9  不同升温速率下3组环氧树脂混合体系固化速率关于固化度的函数关系

    Figure  9.  Reaction rate as function of degree of curing of three groups of epoxy resin mixture systems at different heating rates

    图  10  超声振动条件下环氧树脂混合体系固化反应的$\ln \beta - 1/T$的拟合

    Figure  10.  Curves of $\ln \beta $ versus $ {1}/{T} $ for the curing reaction of epoxy resin mixture systems treated with ultrasonic vibration

    图  11  超声振动条件下环氧树脂混合体系固化反应的$\ln (\beta /{T^2}) - 1/T$的拟合

    Figure  11.  Curves of $\ln (\beta /{T^2})$ versus $ {1}/{T} $ for the curing reaction of epoxy resin mixture systems treated with ultrasonic vibration

    图  12  超声振动条件下环氧树脂混合体系固化反应的$\ln (\beta /T) - 1/T$的拟合

    Figure  12.  Curves of $\ln (\beta /T)$ versus $ {1}/{T} $ for the curing reaction of epoxy resin mixture systems treated with ultrasonic vibration

    图  13  3组环氧树脂混合体系的活化能Ea

    Figure  13.  Activation energies Ea of three groups of epoxy resin mixture systems

    图  14  3组环氧树脂混合体系的Malek判定方程y(α)和z(α)曲线

    Figure  14.  Malek determination equation y(α) and z(α) curves of three groups of epoxy resin mixture systems

    图  15  3组环氧树脂混合体系的拟合变量ln[(1−α)αs]与ln[(dα/dt)ex]的拟合曲线

    Figure  15.  Fitting curves of the fitting variables ln[(1−α)αs] and ln[(dα/dt)ex] for three groups of epoxy resin mixture systems

    图  16  3组环氧树脂混合体系预测固化度与实测固化度的对比

    Figure  16.  Comparison between the predicted degree of cure and the measured degree of cure of three groups of epoxy resin mixture systems

    图  17  不同超声振幅振动下环氧树脂混合体系的玻璃化转变温度Tg

    Figure  17.  Glass transition temperatures Tg of epoxy resin mixture systems under different ultrasonic amplitude vibrations

    图  18  超声振幅与树脂固化物拉伸强度的关系

    Figure  18.  Relationship between ultrasonic amplitude and tensile strength of cured resin

    表  1  环氧树脂体系样品编号

    Table  1.   Sample number of epoxy resin system

    SampleEpoxy sample mass/gVibration time/sAmplitude percentage/%
    #01AB 55 0
    #20AB 55 45 20
    #40AB 55 45 40
    Notes:Take #01AB as an example, #01—Sample number; A—Resin; B—Curing agent; AB—Mixed system.
    下载: 导出CSV

    表  2  环氧树脂混合体系的DSC固化参数

    Table  2.   DSC curing parameters of epoxy resin mixture systems

    SampleHeating rate/(℃·min−1)To/℃Tp/℃Te/℃ΔHtotal/(J·g−1)
    #01AB 10 57.4 91.9 131.1 528.44
    15 62.4 99.4 140.1 530.66
    20 68.7 107.1 143 479.73
    #20AB 10 50.1 86.3 135.1 476.78
    15 57.3 95.4 147.2 483.54
    20 56.4 95.8 146.4 474.52
    #40AB 10 59.7 93.2 129.5 527.52
    15 60.9 97.4 130.7 490.79
    20 72.7 107.6 137.7 547.97
    Notes:To, Tp, Te―Onset, peak and end temperatures of curing, respectively;ΔHtotal―Total heat of curing reaction.
    下载: 导出CSV

    表  3  不同升温速率下各环氧树脂混合体系的固化动力学参数

    Table  3.   Curing kinetics parameters of each epoxy resin mixture system at different heating rates

    SampleHeating rate/(K·min−1)${E_{\rm{a}} }$/(kJ·mol−1)αMαPR2lnAmn
    #01AB 10 54.5 0.1898 0.4899 0.9959 17.6387 0.3494 1.4915
    15 0.1995 0.5097 0.9940 17.6726 0.3512 1.4089
    20 0.1895 0.5205 0.9960 17.5947 0.3408 1.4573
    Mean 0.1929 0.5067 0.9953 17.6353 0.3471 1.4526
    #20AB 10 71.6 0.0300 0.4697 0.9968 23.2910 0.0537 1.7357
    15 0.0200 0.4706 0.9927 23.0414 0.0335 1.6394
    20 0.0400 0.4600 0.9959 23.4763 0.0766 1.8374
    Mean 0.0300 0.4668 0.9951 23.2696 0.0546 1.7375
    #40AB 10 51.8 0.2400 0.5095 0.9896 16.7716 0.4376 1.3862
    15 0.2198 0.5499 0.9977 16.9313 0.3655 1.2977
    20 0.2706 0.5393 0.9830 16.9438 0.5104 1.3758
    Mean 0.2435 0.5329 0.9901 16.8822 0.4378 1.3532
    Notes:${E_{\rm{a}} }$―Activation energy;αM, αP―Curing degrees at the maximum values of $ {y}(\alpha ) $ and $ {z}(\alpha ) $;R2―Standard deviation;A―Pre-exponential factor;m, n―Reaction orders.
    下载: 导出CSV
  • [1] WU M, TONG X, WANG H, et al. Effect of ultrasonic vibration on adhesive bonding of CFRP/Al alloy joints grafted with silane coupling agent[J]. Polymers,2020,12(4):947. doi: 10.3390/polym12040947
    [2] 姜开宇, 李豪, 左军超, 等. 超声振动对玻纤增强聚丙烯复合材料注射成型特性的影响[J]. 复合材料学报, 2015, 32(5):1330-1340.

    JIANG Kaiyu, LI Hao, ZUO Junchao, et al. Effects of ultrasonic vibration on injection molding characteristics of glass fiber reinforced polypropylene composites[J]. Acta Materiae Compositae Sinica,2015,32(5):1330-1340(in Chinese).
    [3] MASATO D, SORGATO M, LUCCHETTA G. Effect of ultrasound vibration on the ejection friction in microinjection molding[J]. The International Journal of Advanced Manufacturing Technology,2018,96(1):345-358.
    [4] 袁满, 何亚东, 李锐, 等. 连续纤维增强热塑性复合材料熔融浸渍模型[J]. 塑料科技, 2019, 47(7):12-17.

    YUAN Man, HE Yadong, LI Rui, et al. Melt impregnation model of continuous fiber reinforced thermoplastic composites[J]. Plastics Science and Technology,2019,47(7):12-17(in Chinese).
    [5] 徐玺涛. 超声外场下微结构注塑成型质量的研究[D]. 大连: 大连理工大学, 2020.

    XU Xitao. Study on microstructure injection molding qua-lity nnder ultrasonic external field[D]. Dalian: Dalian University of Technology, 2020(in Chinese).
    [6] 相海平. 超声波振动辅助倒装芯片下填充成型工艺基础研究[D]. 武汉: 武汉理工大学, 2017.

    XIANG Haiping. Fundamental research on ultrasonic vibration assisted flip chip underfill molding process[D]. Wuhan: Wuhan University of Technology, 2017(in Chinese).
    [7] 中国国家标准化管理委员会. 树脂浇铸体性能试验方法: GB/T 2567—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Test methods for properties of resin casting boby: GB/T 2567—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [8] 郭帅, 杨旭静, 方文俊, 等. 快速固化环氧树脂/碳纤维复合材料的性能[J]. 工程塑料应用, 2017, 45(4):28-32.

    GUO Shuai, YANG Xujing, FANG Wenjun, et al. Properties of rapid curing epoxy resin/carbon fiber composites[J]. Engineering Plastics Application,2017,45(4):28-32(in Chinese).
    [9] MUSTAFA M F, COOK W D, SCHILLER T L, et al. Curing behavior and thermal properties of TGDDM copolymerized with a new pyridine-containing diamine and with DDM or DDS[J]. Thermochimica Acta,2014,575:21-28. doi: 10.1016/j.tca.2013.09.018
    [10] WAN J, LI C, FAN H, et al. Branched 1, 6-diaminohexane-derived aliphatic polyamine as curing agent for epoxy: Isothermal cure, network structure, and mechanical properties[J]. Industrial and Engineering Chemistry Research,2017,56(17):4938-4948. doi: 10.1021/acs.iecr.7b00610
    [11] LI Y, LI C, SUN X S. Isothermal curing kinetics of epoxi-dized fatty acid methyl esters and triacylglycerols[J]. Journal of the American Oil Chemists’ Society,2019,96(9):1035-1045. doi: 10.1002/aocs.12260
    [12] ZHAO X, HUANG Z, SONG P, et al. Effect of isophorone diamine on curing kinetics and mechanical properties of 2-ethyl-4-methylimidazole/epoxy resin crosslinked network[J]. Thermochimica Acta,2019,680:178380.
    [13] LIN R, ZHAO H, ZUO L, et al. Study on curing kinetics of fatty amine/epoxy resin using non-isothermal DSC method[J]. IOP Conference Series: Earth and Environmental Science,2019,252(2):022048.
    [14] JOUYANDEH M, PARAN S M R, JANNESARI A, et al. Protocol for nonisothermal cure analysis of thermoset composites[J]. Progress in Organic Coatings,2019,131:333-339. doi: 10.1016/j.porgcoat.2019.02.040
    [15] KOGA N. Ozawa’s kinetic method for analyzing thermoanalytical curves[J]. Journal of Thermal Analysis and Calorimetry,2013,113(3):1527-1541. doi: 10.1007/s10973-012-2882-5
    [16] TUDORACHI N, MUSTATA F. Curing and thermal degradation of diglycidyl ether of bisphenol A epoxy resin crosslinked with natural hydroxy acids as environmentally friendly hardeners[J]. Arabian Journal of Chemistry,2020,13(1):671-682. doi: 10.1016/j.arabjc.2017.07.008
    [17] FLYNN J H. The isoconversional method for determination of energy of activation at constant heating rates[J]. Journal of Thermal Analysis,1983,27(1):95-102. doi: 10.1007/BF01907325
    [18] COATS A W, REDFERN J P. Kinetic parameters from thermogravimetric data[J]. Nature,1964,201:68-69. doi: 10.1038/201068a0
    [19] LIM A C R, CHIN B L F, JAWAD Z A, et al. Kinetic analysis of rice husk pyrolysis using Kissinger-Akahira-Sunose (KAS) method[J]. Procedia Engineering,2016,148:1247-1251. doi: 10.1016/j.proeng.2016.06.486
    [20] BOSWELL P G. On the calculation of activation energies using a modified Kissinger method[J]. Journal of Thermal Analysis,1980,18(2):353-358. doi: 10.1007/BF02055820
    [21] SONG Y, LIU M, ZHANG L, et al. Mechanistic interpretation of the curing kinetics of tetra-functional cyclosiloxanes[J]. Chemical Engineering Journal,2017,328:274-279. doi: 10.1016/j.cej.2017.07.036
    [22] SENUM G I, YANG R T. Rational approximations of the integral of the Arrhenius function[J]. Journal of Thermal Analysis and Calorimetry,1977,11(3):445-447. doi: 10.1007/BF01903696
    [23] MÁLEK J. The kinetic analysis of non-isothermal data[J]. Thermochimica Acta,1992,200:257-269. doi: 10.1016/0040-6031(92)85118-F
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  1160
  • HTML全文浏览量:  623
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-19
  • 修回日期:  2021-05-25
  • 录用日期:  2021-05-25
  • 网络出版日期:  2021-06-02
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回