留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CT技术的冷再生混合料冻融环境下损伤分析

王石 赵宪锋 米弘泽

王石, 赵宪锋, 米弘泽. 基于CT技术的冷再生混合料冻融环境下损伤分析[J]. 复合材料学报, 2022, 39(4): 1692-1700. doi: 10.13801/j.cnki.fhclxb.20210601.004
引用本文: 王石, 赵宪锋, 米弘泽. 基于CT技术的冷再生混合料冻融环境下损伤分析[J]. 复合材料学报, 2022, 39(4): 1692-1700. doi: 10.13801/j.cnki.fhclxb.20210601.004
WANG Shi, ZHAO Xianfeng, MI Hongze. Damage analysis of cold recycled mixture under freeze-thaw environment based on CT technology[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1692-1700. doi: 10.13801/j.cnki.fhclxb.20210601.004
Citation: WANG Shi, ZHAO Xianfeng, MI Hongze. Damage analysis of cold recycled mixture under freeze-thaw environment based on CT technology[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1692-1700. doi: 10.13801/j.cnki.fhclxb.20210601.004

基于CT技术的冷再生混合料冻融环境下损伤分析

doi: 10.13801/j.cnki.fhclxb.20210601.004
基金项目: 国家自然科学基金青年基金(11302091)
详细信息
    通讯作者:

    赵宪锋,博士,副教授,硕士生导师,研究方向为工程结构力学、电磁固体力学、颗粒介质力学 E-mail:zhaoxf@mail.lzjtu.cn

  • 中图分类号: U414;TB33

Damage analysis of cold recycled mixture under freeze-thaw environment based on CT technology

  • 摘要: 通过室内实验揭示冻融环境下水泥稳定冷再生混合料细观结构的损伤演化规律,并分析水泥和旧路面沥青材料(RAP)在不同的冻融循环时期对其损伤的影响。使用CT机对冻融循环后的试件进行扫描,获得二维断层扫描图像。利用图像处理技术对扫描断面进行分析,并以图像中CT均值的变化为基础引入损伤变量。研究结果表明:随着冻融循环次数n的增加,混合料断面的CT均值呈现出先增大后减小的变化规律;损伤变量则表现出先减小后增大的变化趋势,反映出了冻融环境下水泥稳定冷再生混合料从初始细观损伤到宏观破损的全过程,可分为4个阶段:即$N \leqslant 1$$1 < N \leqslant 3$$3 < N \leqslant 7$$7 < N \leqslant 9$,且在N小于7次时水泥含量对试件损伤有显著影响,水泥可提高混合料的粘结性及早期强度;大于7次时试件的损伤主要受到RAP掺量的影响,过高的RAP含量会加剧混合料的损伤。

     

  • 图  1  冻融循环CSCRM试件

    Figure  1.  Specimens of CSCRM before freeze-thaw cycle

    图  2  冻融循环后破损的CSCRM试件

    Figure  2.  Specimens of CSCRM damaged after freeze-thaw cycle

    图  3  3种冻融循环次数N下CSCRM (70wt%RAP)-CTS3试件距底面45 mm横断面等密度分割图像

    Figure  3.  Isodensity segmentation images of CSCRM (70wt%RAP)-CTS3 specimen 45 mm from the bottom under the conditions for three freeze-thaw cycles N

    图  4  CSCRM(30wt%RAP)-CTS1试样距顶面12 mm横断面不同冻融次数N下的CT图像

    Figure  4.  CT images of CSCRM(30wt%RAP)-CTS1 specimen with different freeze-thaw times N in cross-section 12 mm from the top surface

    图  5  CSCRM(50wt%RAP)-CTS1试样距顶面12 mm横断面不同冻融次数N下的CT图像

    Figure  5.  CT images of CSCRM(50wt%RAP)-CTS1 specimen with different freeze-thaw times N in cross-section 12 mm from the top surface

    图  6  CSCRM(70wt%RAP)-CTS1试样距顶面12 mm横断面不同冻融次数N下的CT图像

    Figure  6.  CT images of CSCRM(70wt%RAP)-CTS1 specimen with different freeze-thaw times N in cross-section 12 mm from the top surface

    图  7  CSCRM的CT数均值随冻融次数变化曲线

    Figure  7.  Curves of the mean value of CT number with the number of freezing and thawing

    $\Delta \bar{H}$—Average CT number

    图  8  CSCRM损伤度随冻融次数变化曲线

    Figure  8.  Change curves of damage degree of CSCRM with freeze-thaw cycles times

    ΔD—Damage degree changes

    图  9  CSCRM的损伤度与劈裂强度的关系

    Figure  9.  Relationship between damage degree and splitting strength of CSCRM

    表  1  试件材料参数

    Table  1.   Material property parameters of specimen

    ItemApparent density/(kg·m−3)Voidage/%Needle-like particle content/%Mud content/%
    RAP 2.653 47.3 16.4 0.3
    0-5 mm aggregate 2.574 42.3 5.3 15.2
    Note: RAP—Recycled asphalt pavement.
    下载: 导出CSV

    表  2  水泥稳定冷再生混合料(CSCRM)级配

    Table  2.   Gradation of cement stabilized cold recycled mixture (CSCRM)

    Specimen
    Gradation of mixture/%
    0.15
    /mm
    0.60
    /mm
    2.36
    /mm
    4.75
    /mm
    9.50
    /mm
    19.0
    /mm
    26.5
    /mm
    31.5
    /mm
    CSCRM(30wt%RAP) 11.1 37.5 53.9 71.5 84.2 96.7 99.8 100
    CSCRM(50wt%RAP) 18.1 26.3 40.1 56.5 73.5 94.0 99.4 100
    CSCRM(70wt%RAP) 5.0 16.9 26.5 40.7 62.1 91.9 99.2 100
    下载: 导出CSV

    表  3  CSCRM配合比

    Table  3.   Mix ratio of CSCRM

    SpecimenRAP test value
    /wt%
    Aggregate/wt%Cement
    /wt%
    Water
    /wt%
    CSCRM(30wt%RAP) 27.65 64.52 2.76 5.07
    CSCRM(50wt%RAP) 46.17 46.17 2.76 4.90
    CSCRM(70wt%RAP) 63.87 27.37 4.56 4.20
    下载: 导出CSV

    表  4  CT机扫描参数

    Table  4.   Scanning parameters of CT machine

    Voltage
    /kV
    Electric current/mALayer thickness/mmReconstruction matrixMagnification
    12018531024×10241
    下载: 导出CSV

    表  5  劈裂夹具参数

    Table  5.   Parameters of splitting fixture

    Maximum bracket
    block/mm
    Width of left and right
    gear of bracket/mm
    Length/
    mm
    50×20151, 101305
    下载: 导出CSV

    表  6  3种不同配合比CSCRM的冻融劈裂强度

    Table  6.   Freeze-thaw splitting strength of CSCRM with three different combinations under different cycles

    Freeze-thaw
    time
    Splitting strength/MPa
    CSCRM
    (30wt%RAP)
    CSCRM
    (50wt%RAP)
    CSCRM
    (70wt%RAP)
    0 0.62 0.53 0.71
    1 0.58 0.49 0.66
    3 0.53 0.45 0.62
    5 0.50 0.42 0.58
    7 0.48 0.40 0.55
    9 0.47 0.39 0.53
    下载: 导出CSV
  • [1] 王宏. 全深式水泥稳定就地冷再生基层应用与耐久性能评价[J]. 公路, 2019, 64(6):1-8.

    WANG Hong. Application and durability evaluation of full-deep cement stabilized in-situ cold recycled mixture base[J]. Highway,2019,64(6):1-8(in Chinese).
    [2] 薄雪峰. 冻融循环对泡沫沥青冷再生混合料宏细观结构性能的影响[J]. 公路, 2018, 63(9):47-58.

    BO Xuefeng. Impact of freeze-thaw cycles on macro and micro structure and properties of foamed asphalt cold recycled asphalt mixtures[J]. Highway,2018,63(9):47-58(in Chinese).
    [3] GUO L, CARPINTERI A, SUN W, et al. Measurement and analysis of defects in high-performance concrete with three-dimensional micro-computer tomography[J]. Jour-nal of Southeast University (English Edition),2009,25(1):83-88.
    [4] SUZUKI T, OGATA H, TAKADA R, et al. Use of acoustic emission and X-ray computed tomography for damage evaluation of freeze-thawed concrete[J]. Construction and Building Materials,2010,24(12):2347-2352. doi: 10.1016/j.conbuildmat.2010.05.005
    [5] CHEN J, DENG X, LUO Y, et al. Investigation of microstructural damage in shotcrete under a freeze-thaw environment[J]. Construction and Building Materials,2015,83:275-282. doi: 10.1016/j.conbuildmat.2015.02.042
    [6] PROMENTILLA M A B, SUGIYAMA T. X-ray microtomography of mortars exposed to freezing-thawing action[J]. Journal of Advanced Concrete Technology,2010,8(2):97-111. doi: 10.3151/jact.8.97
    [7] SUZUKI T, NISHIMURA S, SHIMAMOTO Y, et al. Damage estimation of concrete canal due to freeze and thawed effects by acoustic emission and X-ray CT methods[J]. Construction and Building Materials, 2020, 245: 118343.
    [8] 田威, 张鹏坤, 谢永利, 等. 冻融环境下基于CT技术混凝土孔隙结构的三维分布特征[J]. 长安大学学报(自然科学版), 2016, 36(3):49-55.

    TIAN Wei, ZHANG Pengkun, XIE Yongli, et al. 3D distribution characteristics on concrete porous structure under freeze-thaw environment based on CT technique[J]. Journal of Chang'an University (Natural Science Edition),2016,36(3):49-55(in Chinese).
    [9] 田威, 谢永利, 党发宁. 基于CT技术的混凝土冻融环境下细观损伤机理的试验研究[J]. 武汉大学学报(工学版), 2016, 49(3):397-401.

    TIAN Wei, XIE Yongli, DANG Faning. Experimental study of meso-damage mechanism of concrete under freezing-thawing environment based on CT technology[J]. En-gineering Journal of Wuhan University,2016,49(3):397-401(in Chinese).
    [10] 田威, 韩女, 张鹏坤. 基于CT技术的混凝土孔隙结构冻融损伤试验[J]. 中南大学学报(自然科学版), 2017, 48(11):3069-3075. doi: 10.11817/j.issn.1672-7207.2017.11.026

    TIAN Wei, HAN Nv, ZHANG Pengkun. Experiments on the freeze-thaw damage of concrete porous structure based on CT technique[J]. Journal of Central South University (Science and Technology),2017,48(11):3069-3075(in Chinese). doi: 10.11817/j.issn.1672-7207.2017.11.026
    [11] 张倩, 李创军. 沥青混合料冻融劈裂微观结构损伤特性分析[J]. 公路交通科技, 2010, 27(2):6-9. doi: 10.3969/j.issn.1002-0268.2010.02.002

    ZHANG Qian, LI Chuangjun. Analysis of micro structural damage characteristics of freeze-thaw split asphalt mixtures[J]. Journal of Highway and Transportation Research and Development,2010,27(2):6-9(in Chinese). doi: 10.3969/j.issn.1002-0268.2010.02.002
    [12] 司伟, 马骉, 汪海年, 等. 沥青混合料在冻融循环作用下的弯拉特性[J]. 吉林大学学报(工学版), 2013, 43(4):885-890.

    SI Wei, MA Biao, WANG Hainian, et al. Flexural tensile characteristics of asphalt mixture under freeze-thaw cycles[J]. Journal of Jilin University(Engineering and Technology Edition),2013,43(4):885-890(in Chinese).
    [13] 李兆生, 谭忆秋. 沥青混合料冻融损伤特性研究[J]. 中国科技论文, 2014, 9(11):1279-1281. doi: 10.3969/j.issn.2095-2783.2014.11.015

    LI Zhaosheng, TAN Yiqiu. Research on asphalt mixture freezing-thawing damage performance[J]. China Sciencepaper,2014,9(11):1279-1281(in Chinese). doi: 10.3969/j.issn.2095-2783.2014.11.015
    [14] 徐金枝, 郝培文, 王宏, 等. 两种粘结料对泡沫沥青冷再生混合料性能的影响[J]. 复合材料学报, 2017, 34(4):687-693.

    XU Jinzhi, HAO Peiwen, WANG hong, et al. Influences of two binder materials on performance of cold recycled mixtures stabilized with foamed asphalt[J]. Acta Materiae Compositae Sinica,2017,34(4):687-693(in Chinese).
    [15] 魏唐中, 洪锦祥, 林俊涛. 水泥与乳化沥青对冷再生强度的影响及作用机理[J]. 建筑材料学报, 2017, 20(2):310-315. doi: 10.3969/j.issn.1007-9629.2017.02.027

    WEI Tangzhong, HONG Jinxiang, LIN Juntao. Effect and action mechanism of cement and emulsified asphalt on the strength of cold regeneration[J]. Journal of Building Materials,2017,20(2):310-315(in Chinese). doi: 10.3969/j.issn.1007-9629.2017.02.027
    [16] 吴文亮, 卢家志, 涂志先. 基于X-ray CT和离散元法级配离析对沥青混合料骨架结构力学性能的影响[J]. 公路工程, 2020, 45(1):55-61.

    WU Wenliang, LU Jiazhi, TU Zhixian. Influence of gradation segregation on mechanical properties of asphalt mixture skeleton structure based on X-ray CT and discrete element method[J]. Highway Engineering,2020,45(1):55-61(in Chinese).
    [17] 彭蕾, 程英伟, 何晓鸣. 基于CT图像的AC-13C型沥青混合料冻融损坏细观结构分析[J]. 武汉轻工大学学报, 2019, 38(6):39-43. doi: 10.3969/j.issn.2095-7386.2019.06.008

    PENG Lei, CHENG Yingwei, HE Xiaoming. Microstructure analysis of freeze-thaw damage of AC-13C asphalt mixture based on CT image[J]. Journal of Wuhan Polytechnic University,2019,38(6):39-43(in Chinese). doi: 10.3969/j.issn.2095-7386.2019.06.008
    [18] 杜少文. 外加材料对乳化沥青再生水泥稳定碎石混合料性能的影响[J]. 建筑材料学报, 2013, 16(2):360-364. doi: 10.3969/j.issn.1007-9629.2013.02.033

    DU Shaowen. Effect of additive materials on pavement performance of asphalt emulsion recycled cement stabilized aggregate mixture[J]. Journal of Building Materials,2013,16(2):360-364(in Chinese). doi: 10.3969/j.issn.1007-9629.2013.02.033
    [19] 侯月琴, 纪小平, 刘陵庆. 水泥稳定再生集料的力学特性及影响因素研究[J]. 公路交通科技, 2016, 33(12):56-61.

    HOU Yueqin, JI Xiaoping, LIU Lingqing. Study on mechanical property and influencing factors of cement stabilized recycled aggregate[J]. Journal of Highway and Transportation Research and Development,2016,33(12):56-61(in Chinese).
    [20] 王一琪, 谭忆秋, 王兴隆. 水泥稳定碎石冻融损伤疲劳特性研究[J]. 公路, 2017, 62(4):239-242.

    WANG Yiqi, TAN Yiqiu, WANG Xinglong. Study on fatigue characteristics of freeze-thaw damage of cement stabilized macadam[J]. Highway,2017,62(4):239-242(in Chinese).
    [21] 李明欣, 张翼, 王选仓. 水泥掺量对再生混合料力学及干缩性能影响[J]. 河北农业大学学报, 2017, 40(4):119-123.

    LI Mingxin, ZHANG Yi, WANG Xuancang. Influence analysis of cement content on cement stabilized recycle asphalt mixtures for rural road[J]. Journal of Hebei Agricultural University,2017,40(4):119-123(in Chinese).
    [22] 王宏. 不同水泥掺量乳化沥青冷再生混合料细微观空隙分布特征[J]. 公路交通科技, 2016, 33(7):27-34. doi: 10.3969/j.issn.1002-0268.2016.07.005

    WANG Hong. Meso-microscopic void distribution characteristics of emulsified asphalt cold recycled mixture with different cement contents[J]. Journal of Highway and Transportation Research and Development,2016,33(7):27-34(in Chinese). doi: 10.3969/j.issn.1002-0268.2016.07.005
    [23] 李国锋, 郝培文, 蒋鹤, 等. 冻融循环对泡沫沥青再生混合料微观结构的影响[J]. 北京工业大学学报, 2017, 43(10):1508-1513.

    LI Guofeng, HAO Peiwen, JIANG He, et al. Impacts of freeze-thaw cycles on microscopic characteristics of recycled mixture using foamed asphalt[J]. Journal of Beijing University of Technology,2017,43(10):1508-1513(in Chinese).
    [24] 李志刚, 郝培文, 徐金枝. 冻融循环作用对乳化沥青冷再生混合料抗剪性能的影响[J]. 材料导报, 2016, 30(10):121-125. doi: 10.11896/j.issn.1005-023X.2016.10.027

    LI Zhigang, HAO Peiwen, XU Jinzhi. Study on impacts of freeze-thaw cycles on the shear performances of emulsified asphalt cold recycle mixture[J]. Materials Reports,2016,30(10):121-125(in Chinese). doi: 10.11896/j.issn.1005-023X.2016.10.027
    [25] 杨野, 徐剑, 杨彦海, 等. 冻融循环作用下乳化沥青冷再生混合料损伤分析[J]. 沈阳建筑大学学报(自然科学版), 2020, 36(5):869-876.

    YANG Ye, XU Jian, YANG Yanhai, et al. Damage analysis of cold recycled mixes using asphalt emulsion under freeze-thaw cycles[J]. Journal of Shenyang Jianzhu University (Natural Science),2020,36(5):869-876(in Chinese).
    [26] 中华人民共和国交通部(标准制定单位). 公路工程集料试验规程: JTG E42—2005[S]. 北京: 人民交通出版社, 2005.

    Ministry of Transport of the People’s Republic of China. Test methods of aggregate for highway engineering: JTG E42—2005[S]. Beijing: China Communications Press, 2005(in Chinese).
    [27] 中华人民共和国交通部. 公路路面基层施工技术细则: JTG/T F20—2015[S]. 北京: 人民交通出版社, 2015.

    Ministry of Transport of the People’s Republic of China. Technical guidelines for construction of highway roadbases: JTG/T F20—2015[S]. Beijing: China Communications Press, 2015(in Chinese).
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  807
  • HTML全文浏览量:  360
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-20
  • 修回日期:  2021-05-19
  • 录用日期:  2021-05-27
  • 网络出版日期:  2021-06-02
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回