留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiC纳米线/Mo-Al2O3金属陶瓷的制备与电学性能

张昊 张雪萍 黄宗玥 陈甜甜 魏剑

张昊, 张雪萍, 黄宗玥, 等. TiC纳米线/Mo-Al2O3金属陶瓷的制备与电学性能[J]. 复合材料学报, 2022, 39(4): 1761-1770. doi: 10.13801/j.cnki.fhclxb.20210601.002
引用本文: 张昊, 张雪萍, 黄宗玥, 等. TiC纳米线/Mo-Al2O3金属陶瓷的制备与电学性能[J]. 复合材料学报, 2022, 39(4): 1761-1770. doi: 10.13801/j.cnki.fhclxb.20210601.002
ZHANG Hao, ZHANG Xueping, HUANG Zongyue, et al. Preparation and electrical properties of TiC nanowires/Mo-Al2O3 cermet[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1761-1770. doi: 10.13801/j.cnki.fhclxb.20210601.002
Citation: ZHANG Hao, ZHANG Xueping, HUANG Zongyue, et al. Preparation and electrical properties of TiC nanowires/Mo-Al2O3 cermet[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1761-1770. doi: 10.13801/j.cnki.fhclxb.20210601.002

TiC纳米线/Mo-Al2O3金属陶瓷的制备与电学性能

doi: 10.13801/j.cnki.fhclxb.20210601.002
基金项目: 国家自然科学基金面上项目(51578448;51308447);陕西省自然科学基础研究计划重大基础研究项目(2017ZDJC-18);留学人员科技活动择优资助项目(陕人社函 [2016]789号);陕西省教育厅科学研究计划协同创新中心项目(20JY042);陕西省教育厅科学自然科学专项项目(19JK0463)
详细信息
    通讯作者:

    魏剑,博士,教授,博士生导师,研究方向为导电/纳米纤维与膜材料 E-mail:weijian@xauat.edu.cn

  • 中图分类号: TB333

Preparation and electrical properties of TiC nanowires/Mo-Al2O3 cermet

  • 摘要: Mo-Al2O3金属陶瓷具有热震稳定性好、耐高温、低电阻等优点,已经作为特高压(UHVDC)运输过程中的核心部件。但由于电阻率可控性差、渗流阈值较高及机械强度低等缺点,严重制约了其在特高压运输中的广泛应用。采用碳化钛纳米线(TiCNW),制备了具有桥连结构的TiCNW/Mo-Al2O3陶瓷复合材料。研究了TiCNW、Mo与Al2O3之间构建的桥连结构,对金属陶瓷的电学性能和力学性能的影响规律,实现了陶瓷电阻率稳定的基础上的渗流阈值降低。当TiCNW含量为13wt%时,Mo-Al2O3金属陶瓷的渗滤阈值降低到10wt%,当TiCNW和Mo含量分别为8wt%和30wt%时,金属陶瓷弯曲强度和硬度可分别达到95 MPa和1283 kg/mm2,并观察到金属陶瓷桥联结构。研究结果对于制备高性能Mo-Al2O3金属陶瓷具有重要意义。

     

  • 图  1  静电纺丝法制备碳化钛纳米线(TiCNW)的SEM图像 (a) 和XRD图谱 (b)

    Figure  1.  SEM image (a) and XRD pattarn (b) of titanium carbide nanowires (TiCNW) prepared by electrospinning

    图  2  TiCNW的拉曼光谱

    Figure  2.  Raman spectra of TiCNW

    ID/IG—Intensity ratio of peak D to peak G

    图  3  TiCNW的XPS图谱:(a) 全谱图;(b) C1s;(c) Ti2p;(d) O1s

    Figure  3.  XPS spectra of TiCNW: (a) Survey; (b) C1s; (c) Ti2p; (d) O1s

    图  4  TiCNW/Mo-Al2O3陶瓷的SEM图像 ((a),(b))、XRD图谱 (c) 和桥连结构示意图 (d)

    Figure  4.  SEM images ((a),(b)) , XRD pattern (c) and bridging structure diagram (d) of TiCNW/Mo-Al2O3 cermets

    图  5  Mo-Al2O3 (a) 和TiCNW/Mo-Al2O3 (b) 陶瓷的电阻率

    Figure  5.  Resistivity of Mo-Al2O3 (a) and TiCNW/Mo-Al2O3 cermets (b)

    图  6  TiCNW/Mo-Al2O3陶瓷渗流阈值的实际值与理论值关系

    Figure  6.  Relationship between experimental date and theoretical date of TiCNW/Mo-Al2O3 cermets percolation threshold

    图  7  TiCNW/Mo-Al2O3陶瓷阻抗谱图

    Figure  7.  Impedance spectra of TiCNW/Mo-Al2O3 cermets

    图  8  TiCNW/Mo-Al2O3陶瓷的体积密度变化 (a) 和陶瓷气孔率变化 (b)

    Figure  8.  Volume density variation (a) and porosity variation (b) of TiCNW / Mo-Al2O3 ceramics

    图  9  TiCNW/Mo-Al2O3陶瓷弯曲强度变化 (a) 和BSE照片 (b)

    Figure  9.  Bending strength (a) and BSE photo (b) of TiCNW/MO-Al2O3 cermets

    图  10  TiCNW/Mo-Al2O3陶瓷硬度的变化

    Figure  10.  Microhardness changes of TiCNW/Mo-Al2O3 cermets

  • [1] QIN S B, LEI Y T, BARCH C, et al. A high power density series-stacked energy buffer for power pulsation decoupling in single-phase converters[J]. IEEE Transactions on Power Electronics,2016,32(6):4905-4924.
    [2] LYU X F, LI Y C, CAO D. A SiC based high power density single-phase inverter with in-series and parallel power decoupling method[J]. IEEE Journal of Emerging Selected Topics in Power Electronics,2017,4(3):893-901.
    [3] PASSON S, GITIN L, MEISNER J. Investigating the properties of precision resistors for the application in high voltage DC dividers[C]//IEEE International Workshop on Applied Measurements for Power Systems. Aachen, 2016.
    [4] GUO F, QIAO B B. Corrosion behavior of a steel bar embedded in a cement-based conductive composite[J]. Construction Building Materials,2017,134(1):388-396.
    [5] MARIA M J, BALANAND S, ANAS S, et al. Zn-dust derived ultrafine grained ZnO non-linear ceramic resistors via in-situ thermal oxidation of cermet reactant mixture[J]. Materials Design,2016,92:387-396.
    [6] KUMAR R, BHARGAVA P. Fabrication of low specific resistance ceramic carbon composites by colloidal processing using glucose as soluble carbon source[J]. Bulletin of Materials Science,2017,40(6):1197-1202. doi: 10.1007/s12034-017-1463-4
    [7] KUMER R, CHANDRAPPA C N, APPAIASH S. Synthesis and characteristics of aluminium metal matrix composites using Al2O3 and SiC as reinforcement materials[J]. International Journal of Innovative Research in Advanced Engineering, 2014, 1(7): 247-250.
    [8] CHENG Y, ZHANG Y, WAN T, et al. Mechanical properties and toughening mechanisms of graphene platelets reinforced Al2O3/TiC composite ceramic tool materials by microwave sintering[J]. Materials Science Engineering: A,2016,680:190-196.
    [9] 曾金珍, 慕玮, 杨建, 等. Al2O3颗粒形貌对注凝成型ZrO2/Al2O3陶瓷性能的影响[J]. 复合材料学报, 2014, 31(2):416-422.

    ZENG Jinzhen, MU Wei, YANG Jian, et al. Effect of particle morphology of Al2O3 on gelcasting of ZrO2/Al2O3 ceramics[J]. Acta Materiae Compositae Sinica,2014,31(2):416-422(in Chinese).
    [10] RAJABI A, GHAZALI M J, DAUD A. Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet—A review[J]. Materials Design,2015,67:95-106. doi: 10.1016/j.matdes.2014.10.081
    [11] 李妤婕, 武志红, 张聪. 保护气氛下反应烧结MoSi2/Al2O3复合陶瓷[J]. 复合材料学报, 2017, 34(5):1034-1039.

    LI Yujie, WU Zhihong, ZHANG Cong. Fabrication of MoSi2/Al2O3 composites with reaction sintering method under protective atmosphere[J]. Acta Materiae Compositae Sinica,2017,34(5):1034-1039(in Chinese).
    [12] 任会兰, 龙波, 宁建国, 等. ZrO2增韧Al2O3陶瓷的力学性能和增韧机制[J]. 复合材料学报, 2015, 32(3):776-781.

    REN Huilan, LONG Bo, NING Jianguo, et al. Mechanical properties and toughening mechanisms of ZrO2 toughened Al2O3 ceramics[J]. Acta Materiae Compositae Sinica,2015,32(3):776-781(in Chinese).
    [13] WANG J, LUI Y, YE J W, et al. The fabrication of multi-core structure cermets based on (Ti, W, Ta)CN and TiCN solid-solution powders[J]. International Journal of Refractory Metals Hard Materials,2017,64:294-300. doi: 10.1016/j.ijrmhm.2016.09.011
    [14] HUSSIUN S, BARBARIOL I, ROITTI S, et al. Electrical conductivity of an insulator matrix (alumina) and conductor particle (molybdenum) composites[J]. Journal of the European Cermiac Society,2003,23(2):315-321. doi: 10.1016/S0955-2219(02)00185-1
    [15] MIN G J, BAE S, KANG B C, et al. Surface discharge characteristics study on the laminated solid insulator in quasi-uniform electric field with dry air[J]. Journal of Electrical Engineering Technology,2015,10(2):603-609. doi: 10.5370/JEET.2015.10.2.603
    [16] LI G, LI S, PAN S, et al. Effect of electron irradiation on DC surface flashover of polyimide in vacuum[J]. IEEE Transactions on Dielectrics Electrical Insulation,2016,23(3):1846-1853. doi: 10.1109/TDEI.2016.005429
    [17] SONG J, SU Y, FAN H, et al. A novel design to produce high-strength and high-toughness alumina self-lubricated composites with enhanced thermal-shock resistance—Part I: Mechanical properties and thermal shock behavior of Al2O3/Mo-Al2O3 laminated composites[J]. Journal of the European Ceramic Society,2017,37(1):213-221. doi: 10.1016/j.jeurceramsoc.2016.08.016
    [18] ZHOU Y, GAO Y, WEI S, et al. Preparation and characterization of Mo/Al2O3 composites[J]. International Journal of Refractory Metals Hard Materials,2016,54:186-195. doi: 10.1016/j.ijrmhm.2015.07.033
    [19] 张昊, 史忠旗, 胡梦杉, 等. Mo元素掺杂对氧化铝基陶瓷/金属复合材料微观形貌及介电性能的影响[J]. 稀有金属材料与工程, 2016, 45(10):2583-2586.

    ZHANG H, SHI Z Q, HU M S, et al. Influence of Mo doping on the microstructure and dielectric property of alumina ceramic/metal composites[J]. Rare Metal Materials En-gineering,2016,45(10):2583-2586(in Chinese).
    [20] ZHANG L, LIU Z, LU X, et al. Nano-clip based composites with a low percolation threshold and high dielectric constant[J]. Nano Energy,2016:550-557.
    [21] QU M, NILSSON F, QIN Y, et al. Electrical conductivity and mechanical properties of melt-spun ternary composites comprising PMMA, carbon fibers and carbon black[J]. Composites Science Technology,2017,150(29):24-31.
    [22] WU S, PENG S, WANG C, et al. The effect of dual-scale carbon fibre network on sensitivity and stretchability of wearable sensors[J]. Composites Science Technology,2018(165):138-139.
    [23] VO N H, DAO T D, JEONG H M. Electrically conductive graphene/poly (methyl methacrylate) composites with ultra-low percolation threshold by electrostatic self-assembly in aqueous medium[J]. Macromolecular Che-mistry and Physics,2015,216(7):770-782. doi: 10.1002/macp.201400560
    [24] GONG T, PENG S P, BAO R Y. Low percolation threshold and balanced electrical and mechanical performances in polypropylene/carbon black composites with a continuous segregated structure[J]. Composites Part B: Engineering,2016,99:348-357. doi: 10.1016/j.compositesb.2016.06.031
    [25] DEPLANCKE T, LAME O, BARRAU S. Impact of carbon nanotube prelocalization on the ultra-low electrical percolation threshold and on the mechanical behavior of sintered UHMWPE-based nanocomposites[J]. Polymer,2017,111:204-213. doi: 10.1016/j.polymer.2017.01.040
    [26] PALAIMIENE E, MACUTKEVIC J, BANYS J. Ultra-low percolation threshold in epoxy resin-onion-like carbon composites[J]. Applied Physics Letters,2018,113(3):033105. doi: 10.1063/1.5030526
    [27] DEMIRORS A, IMHOF A. BaTiO3, SrTiO3, CaTiO3, and BaxSr1−xTiO3 particles: A general approach for monodisperse colloidal perovskites[J]. Chemistry of Materials,2009,21(13):3002-3007. doi: 10.1021/cm900693r
    [28] SHI Z C, FAN R H, WANG X A, et al. Radio-frequency permeability and permittivity spectra of copper/yttrium iron garnet cermet prepared at low temperatures[J]. Journal of the European Ceramic Society,2015,35(4):1219-1225. doi: 10.1016/j.jeurceramsoc.2014.10.034
    [29] WANG L, BAI Y, LU X, et al. Ultra-low percolation threshold in ferrite-metal cofired ceramics brings both high permeability and high permittivity[J]. Scientific Reports,2015,5:7580-7584. doi: 10.1038/srep07580
    [30] LUX F. Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials[J]. Journal of Materials Science,1993,28(2):285-301. doi: 10.1007/BF00357799
    [31] DIETRICH S. Introduction to percolation theory[M]. London: Taylor & Francis, 1985.
    [32] SUN Y, BAO H D, GUO Z X, et al. Modeling of the electrical percolation of mixed carbon fillers in polymer-based composites[J]. Macromolecules,2009,42(1):459-463. doi: 10.1021/ma8023188
    [33] SEN W, XU B Q, YANG B, et al. Preparation of TiC powders by carbothermal reduction method in vacuum[J]. Transactions of Nonferrous Metals Society of China,2011,21(1):185-190. doi: 10.1016/S1003-6326(11)60697-3
    [34] 李瑗茹. RGO/Cu复合材料致密化工艺及电接触特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    LI Yuanru. Research on densification process and electrical contact properties of RGO/Cu composites[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).
    [35] 马婕, 王成国, 于美杰, 等. PAN基碳化纤维的电性能及应用[J]. 功能材料, 2010, 41(3):549-551.

    MA Jie, WANG Chengguo, YU Meijie, et al. Electrical property and application of PAN-based carbonaceous fibers[J]. Journal of Functional Materials,2010,41(3):549-551(in Chinese).
    [36] CHEN T, LI M, SONG S, et al. Biotemplate preparation of multilayered TiC nanoflakes for high performance symmetric supercapacitor[J]. Nano Energy,2020,71:337-342.
    [37] IRVINE J, SINCLAIR D C, WEST A. Electroceramics: Characterization by impedance spectroscopy[J]. Advanced Materials,1990,2(3):132-138. doi: 10.1002/adma.19900020304
    [38] 陈军军. SiC基复相导电陶瓷的制备与性能研究[D]. 上海: 中国科学院大学(中国科学院上海硅酸盐研究所), 2018.

    CHEN Junjun. Preparation and properties of SiC based electrical conductive ceramics[D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2018(in Chinese).
    [39] 杭晓聪. TiB2-B4C复相陶瓷的制备工艺及力学性能研究[D]. 北京: 北京理工大学, 2016.

    HANG Xiaocong. Preparation and mechanical properties of TiB2-B4C composite ceramics[D]. Beijing: Beijing Institute of Technology, 2016(in Chinese).
    [40] YI G, SAGI S, ZHANG L, et al. Electrospun nano-scaled glass fiber reinforcement of bis-GMA/TEGDMA dental composites[J]. Journal of Applied Polymer Science,2010,110(4):2063-2070.
    [41] 康龙昭. 一维填料增强增韧陶瓷基复合树脂材料的研究[D]. 北京: 北京化工大学, 2016.

    KANG Longzhao. Study on one-dimensional filler reinforced and toughened ceramic matrix composite resin material[D]. Beijing: Beijing University of Chemical Technology, 2016(in Chinese).
  • 加载中
图(10)
计量
  • 文章访问数:  921
  • HTML全文浏览量:  332
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-12
  • 修回日期:  2021-05-20
  • 录用日期:  2021-05-26
  • 网络出版日期:  2021-06-02
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回