留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO2开关型表面活性剂聚酯烯基磺酸钠的合成及其乳化性能

田俐 王金晶 刘强 唐甜甜 吴杰灵

田俐, 王金晶, 刘强, 等. CO2开关型表面活性剂聚酯烯基磺酸钠的合成及其乳化性能[J]. 复合材料学报, 2021, 38(12): 3996-4003. doi: 10.13801/j.cnki.fhclxb.20210531.004
引用本文: 田俐, 王金晶, 刘强, 等. CO2开关型表面活性剂聚酯烯基磺酸钠的合成及其乳化性能[J]. 复合材料学报, 2021, 38(12): 3996-4003. doi: 10.13801/j.cnki.fhclxb.20210531.004
TIAN Li, WANG Jinjing, LIU Qiang, et al. Synthesis and emulsifying performance of polyester sodium olefin sulfonate polymer as a CO2-switchable surfactant[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 3996-4003. doi: 10.13801/j.cnki.fhclxb.20210531.004
Citation: TIAN Li, WANG Jinjing, LIU Qiang, et al. Synthesis and emulsifying performance of polyester sodium olefin sulfonate polymer as a CO2-switchable surfactant[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 3996-4003. doi: 10.13801/j.cnki.fhclxb.20210531.004

CO2开关型表面活性剂聚酯烯基磺酸钠的合成及其乳化性能

doi: 10.13801/j.cnki.fhclxb.20210531.004
基金项目: 国家自然科学基金 (51202066);教育部新世纪优秀人才支持计划项目(NCET-13-0784)
详细信息
    通讯作者:

    田俐,博士,教授,博士生导师,研究方向为纳米光电材料 E-mail:849050031@qq.com

  • 中图分类号: O461

Synthesis and emulsifying performance of polyester sodium olefin sulfonate polymer as a CO2-switchable surfactant

  • 摘要: 高分子表面活性剂被广泛应用于科学研究及食品、农业、纺织等工业领域。为了减少在大多数实际应用过程结束后失去活性的高分子因残留引起的副作用,设计并开发新型的开关型高分子表面活性剂具有重要的意义和应用价值。为此,通过自由基聚合法制备了一种CO2开关型高分子表面活性剂聚(甲基丙烯酸二乙氨基乙酯-乙烯基磺酸钠)(P(DEAEMA-SVS))。采用1H-NMR谱和GPC谱研究聚合物的结构与分子量分布。通过表面张力和界面张力的变化研究P(DEAEMA-SVS)乳液的稳定性。当甲基丙烯酸二乙氨基乙酯(DEAEMA)/乙烯基磺酸钠(SVS)单体投料比为1∶1(摩尔比)时,形成的聚合物粒子粒径约为113 nm,粒径分布窄,可将水的表面张力降低至37.279 mN/m,将水/液体石蜡的界面张力降低至5.492 mN/m,是一种有效的CO2开关型表面活性剂,可作为唯一乳化剂稳定乳液。P(DEAEMA-SVS)的水/液体石蜡乳液具有很好的CO2开关性能,在通入CO2 30 min后可破乳,在60℃下通入N2又可再乳化,且可多次循环。P(DEAEMA-SVS)表面活性剂水溶液可与液体石蜡形成水包油型乳液。乳化机制研究表明,P(DEAEMA-SVS)因侧链上的叔胺基团的疏水性,在CO2的作用下发生质子化作用形成亲水的季铵盐,使乳液油水两相分离而破乳;60℃温度下通入N2可去除CO2,使聚合物侧链上的叔胺基团去质子化疏水吸附在油水界面上再次稳定乳液。

     

  • 图  1  聚(甲基丙烯酸二乙氨基乙酯-乙烯基磺酸钠) (P(DEAEMA-SVS))的核磁氢谱图

    Figure  1.  1H-NMR spectrum of poly(N, N-diethylaminoethyl methacrylate-sodium vinylsulfonate) (P(DEAEMA-SVS))

    图  2  P(DEAEMA-SVS)的分子量分布

    Figure  2.  Molecular weight distribution of P(DEAEMA-SVS)

    图  3  不同单体投料比对聚合物P(DEAEMA-SVS)粒径的影响

    Figure  3.  Influence of surfactants with different monomer ratios on particle-size of P(DEAEMA-SVS)

    图  4  不同单体投料比对聚合物P(DEAEMA-SVS)表面张力和界面张力的影响

    Figure  4.  Influence of surfactants with different monomer ratios on surface tension and interfacial tension of P(DEAEMA-SVS)

    图  5  原始P(DEAEMA-SVS)乳液 (a) 和静置3周后 (b)的外观照片

    Figure  5.  Photographs of P(DEAEMA-SVS) emulsions followed by a period of 0 min (a) and 3 weeks (b) on standing

    图  6  静置30 min (a) 和静置3周后 (b) P(DEAEMA-SVS)乳液的显微镜图像

    Figure  6.  Optical microscopy images of P(DEAEMA-SVS) emulsions followed by a period of 30 min (a) and 3 weeks (b) on standing

    图  7  不同浓度 (0.02wt%~1wt%)的P(DEAEMA-SVS)对乳液稳定性的影响

    Figure  7.  Stability of emulsions formed by different concentrations of P(DEAEMA-SVS) from 0.02wt% to 1wt%

    图  8  不同油水比对P(DEAEMA-SVS) 乳液稳定性的影响

    Figure  8.  Stability of P(DEAEMA-SVS) emulsions formed by different ratios of liquid paraffin to water ((a) For 3 min; (b) For 3 weeks)

    图  9  用P(DEAEMA-SVS)制备的水/液体石蜡乳液CO2循环过程

    Figure  9.  CO2 switchable demulsification and re-emulsification of P(DEAEMA-SVS) emulsion

    图  10  液体石蜡的量对P(DEAEMA-SVS)乳液失稳的影响

    Figure  10.  Effect of liquid paraffin amounts on instability of P(DEAEMA-SVS) emulsion ((a) For 3 min; (b) For 3 weeks)

    图  11  P(DEAEMA-SVS)的浓度对乳液失稳的影响

    Figure  11.  Effect of P(DEAEMA-SVS) concentration on emulsion instability((a) For 3 min; (b) For 3 weeks)

    图  12  P(DEAEMA-SVS)乳液的乳化和破乳机制

    Figure  12.  Proposed emulsifacation and demulsification mechanism of P(DEAEMA-SVS) emulsions

  • [1] JIE D, WANG Y, JIAN Z, et al. Multiple stimuli-responsive polymeric micelles for controlled release[J]. Soft Matter,2012,9(2):370-373.
    [2] ZHANG Q. Preparation of N2/CO2 triggered reversibly coagulatable and redispersible latexes by emulsion polymerization of styrene with a reactive switchable surfactant[J]. Langmuir,2012,28(14):5940-5946. doi: 10.1021/la300051w
    [3] QIAO W, ZHENG Z, SHI Q. Synthesis and properties of a series of CO2 switchable surfactants with imidazoline group[J]. Journal of Surfactants & Detergents,2012,15(5):533-539.
    [4] ZHANG Y M, ZHANG Y D, WANG C, et al. CO2-responsive microemulsion: Reversible switching from an apparent single phase to near-complete phase separation[J]. Green Chemistry,2015,18(2):392-396.
    [5] JESSOP, P G, SU X, CUNNINGHAM MF. Switchable surfactants at the polystyrene-water interface: Effect of molecular structure[J]. Green Materials,2014,2(2):69-74. doi: 10.1680/gmat.13.00015
    [6] HAN D, XIA T, BOISSIERE O, et al. General strategy for making CO2-switchable polymers[J]. Acs Macro Letters,2012,1(1):57-61. doi: 10.1021/mz2000175
    [7] LIU Y. Switchable surfactants[J]. Science,2006,313(5789):958-960. doi: 10.1126/science.1128142
    [8] ZHANG Y, YIN H, FENG Y. CO2-responsive anionic wormlike micelles based on natural erucic acid[J]. Green Materials,2014,2(2):95-103. doi: 10.1680/gmat.13.00016
    [9] HAN D, BOISSIERE O, KUMAR S, et al. Two-way CO2-switchable triblock copolymer hydrogels[J]. Macromolecules,2012,45(18):7440-7445. doi: 10.1021/ma3015189
    [10] BROWN P, BUTTS C P, EASTOE J. Stimuli-responsive surfactants[J]. Soft Matter,2013,9(8):2365-2374. doi: 10.1039/c3sm27716j
    [11] LIU F, URBAN M W. Recent advances and challenges in designing stimuli-responsive polymers[J]. Progress in Polymer Science,2010,35(1-2):3-23. doi: 10.1016/j.progpolymsci.2009.10.002
    [12] MORSE A J, DUPIN D, THOMPSON K L, et al. Novel pickering emulsifiers based on pH-responsive poly(tert-butylaminoethyl methacrylate) latexes[J]. Langmuir the Acs Journal of Surfaces & Colloids,2012,28(32):11733-11740.
    [13] SCOTT L M. Designing the head group of CO2-triggered switchable surfactants[J]. Rsc Advances,2012,2(11):4925-4931. doi: 10.1039/c2ra01242a
    [14] BROWN P, WASBROUGH M J, GURKAN B E, et al. CO2-responsive microemulsions based on reactive ionic liquids[J]. Langmuir,2014,30(15):4267-72. doi: 10.1021/la500675g
    [15] HU J, LIU S. Responsive polymers for detection and sensing applications: Current status and future developments[J]. Macromolecules,2010,43(20):8315-8330. doi: 10.1021/ma1005815
    [16] DESTRIBATS M, PINAUD F, LAPEYRE V, et al. Pickering emulsions stabilized by soft microgels: Influence of the emulsification process on particle interfacial organization and emulsion properties[J]. Langmuir,2013,29(40):12367-12374. doi: 10.1021/la402921b
    [17] DESTRIBATS M, EYHARTS M, LAPEYRE V, et al. Impact of pNIPAM microgel size on its ability to stabilize pickering emulsions[J]. Langmuir the Acs Journal of Surfaces & Colloids,2014,30(7):1768-1777.
    [18] JIANG J, JIANG J, LIU K, et al. Switchable pickering emulsions stabilized by silica nanoparticles hydrophobized in situ with a switchable surfactant[J]. Angewandte Chemie,2013,52(47):12373-12376. doi: 10.1002/anie.201305947
    [19] MORSE A J, ARMES S P, THONPSON K C, et al. Novel pickering emulsifiers based on pH-responsive poly(2-(diethylamino)ethyl methacrylate) latexes[J]. Langmuir,2013,29(18):5466-5475. doi: 10.1021/la400786a
    [20] ZHANG Q Y, WANG G Q, YAN W J, et al. Switchable block copolymer surfactants for preparation of reversibly coagulatable and redispersible poly(methyl methacrylate) latexes[J]. Macromolecules,2013,46(4):1261-1267. doi: 10.1021/ma302505r
    [21] MORSE A J, ARMES S P, MILLS P, et al. Stopped-flow kinetics of pH-responsive polyamine latexes: How fast is the latex-to-microgel transition?[J]. Langmuir the ACS Journal of Surfaces& Colloids,2013,29(49):15209-15216.
    [22] WANG X, JIANG G H, LI X, et al. Synthesis of multi-responsive polymeric nanocarriers for controlled release of bioactive agents[J]. Polymer Chemistry,2013,4(17):4574-4577. doi: 10.1039/c3py00746d
    [23] LU H S, GUAN X Q, DAI S S, et al. Application of CO2-triggered switchable surfactants to form emulsion with xinjiang heavy oil[J]. Journal of Dispersion Science and Technology,2014,35(5):655-662. doi: 10.1080/01932691.2013.803254
    [24] LU H, GUAN X Q, WANG B G, et al. CO2-switchable oil/water emulsion for pipeline transport of heavy oil[J]. Journal of Surfactants and Detergents,2015,18(5):773-782. doi: 10.1007/s11743-015-1712-8
    [25] RICHTERING W. Responsive emulsions stabilized by stimuli-sensitive microgels: Emulsions with special non-Pickering properties[J]. Langmuir the ACS Journal of Surfaces & Colloids,2014,28(50):17218-17226.
    [26] WANG J J, WANG H F, LI Y, et al. Formation and CO2/N2 switchable ability of a novel copolymer poly(N, N-diethylaminoethyl methacrylate-co-codium vinyl-sulfonate)[J]. Polymer Science, Series A,2018,60(5):1-6.
    [27] KUMAR S, TONG X, DORY Y, et al. A CO2-switchable polymer brush for reversible capture and release of proteins[J]. Chemical Communications,2013,49(1):90-92. doi: 10.1039/C2CC36284H
  • 加载中
图(12)
计量
  • 文章访问数:  869
  • HTML全文浏览量:  321
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-25
  • 录用日期:  2021-05-25
  • 网络出版日期:  2021-06-01
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回