留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于金属有机框架的光子晶体制备与应用研究进展

柳浩 赵嘉欣 张耘箫 金梦婷 周岚 刘国金

柳浩, 赵嘉欣, 张耘箫, 等. 基于金属有机框架的光子晶体制备与应用研究进展[J]. 复合材料学报, 2021, 38(10): 3162-3170. doi: 10.13801/j.cnki.fhclxb.20210531.003
引用本文: 柳浩, 赵嘉欣, 张耘箫, 等. 基于金属有机框架的光子晶体制备与应用研究进展[J]. 复合材料学报, 2021, 38(10): 3162-3170. doi: 10.13801/j.cnki.fhclxb.20210531.003
LIU Hao, ZHAO Jiaxin, ZHANG Yunxiao, et al. Research progress in the preparation and application of photonic crystals based on metal-organic framework[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3162-3170. doi: 10.13801/j.cnki.fhclxb.20210531.003
Citation: LIU Hao, ZHAO Jiaxin, ZHANG Yunxiao, et al. Research progress in the preparation and application of photonic crystals based on metal-organic framework[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3162-3170. doi: 10.13801/j.cnki.fhclxb.20210531.003

基于金属有机框架的光子晶体制备与应用研究进展

doi: 10.13801/j.cnki.fhclxb.20210531.003
基金项目: 国家自然科学基金(52003242);浙江省自然科学基金(LQ19E030022;LY20E030006);浙江理工大学科研启动基金(18012212-Y);2020年国家级大学生创新创业训练计划项目(202010338003)
详细信息
    通讯作者:

    刘国金,博士,讲师,硕士生导师,研究方向为光子晶体及其结构生色 E-mail:guojin900618@163.com

  • 中图分类号: O734

Research progress in the preparation and application of photonic crystals based on metal-organic framework

  • 摘要: 近年来,基于光子晶体优异的光学性能和金属有机框架(MOFs)特殊的多孔结构,使基于MOFs的光子晶体研究备受研究者们的关注。本文综述了近年来MOFs材料及其在光子晶体中的应用研究进展。首先简单介绍了MOFs和光子晶体的基本概况及MOFs与光子晶体相结合的优势,然后阐述了基于MOFs的光子晶体的制备方法,进一步概括了其应用现状,并总结了当前基于MOFs的光子晶体研究所存在的困境,最后展望了其未来的发展方向。这些工作为MOFs材料在光子晶体中的实际应用提供了策略支撑。

     

  • 图  1  金属有机框架(MOFs)的结构模型图[3]

    Figure  1.  Structural model diagram of metal-organic framework (MOFs)

    图  2  ZIF-8(a)[4]、UiO-66的八面体(b)[5]、MIL-101(c)[6]、MIL-53(d)[6]、MOF-5(e)[7]的结构示意图

    Figure  2.  Structure diagram of ZIF-8 (a)[4], UiO-66 octahedron structure (b)[5], MIL-101 (c)[6], MIL-53 (d)[6] and schematic diagram of MOF-5 (e)[7]

    图  3  一维光子晶体(a)、二维光子晶体(b)、三维光子晶体(c)示意图[24]

    Figure  3.  Schematic diagram of one-dimensional photonic crystal (a), two-dimensional photonic crystal (b) and three-dimensional photonic crystals (c)[24]

    图  4  ZIF-8/TiO2光子薄膜截面SEM图像及对应的UV-Vis反射光谱[27]

    Figure  4.  SEM images of cross section of ZIF-8/TiO2 photonic film and corresponding UV-Vis reflection spectrum[27]

    图  5  Cu-1,3,5 苯三甲酸(BTC)合成路线示意图[33]

    Figure  5.  Schematic diagram of Cu-benzene tricarbonic acid (BTC) synthesis route[33]

    图  6  蒸发沉积示意图

    Figure  6.  Schematic diagram of evaporation deposition

    图  7  垂直沉积示意图

    Figure  7.  Schematic diagram of vertical deposition

    图  8  ZIF-8颗粒(左)和ZIF-8@光子晶体(右)的SEM图像[37]

    Figure  8.  SEM images of ZIF-8 particles (left) and ZIF-8@ photonic crystals (right)[37]

    图  9  重力沉降法示意图

    Figure  9.  Schematic diagram of gravity settlement method

    图  10  MCC光学传感器件制备流程[4]

    Figure  10.  Preparation process of MOF coated ultra-thin MCC optical sensor[4]

    图  11  基于MOFs的蛋白石型光子晶体的制备过程[40]

    Figure  11.  Preparation process of opal photonic crystals based on MOFs[40]

    图  12  基于MOFs的反蛋白石型光子晶体的制备过程[41]

    Figure  12.  Preparation process of MOFs-based inverse opal photonic crystals[41]

    图  13  HKUST-1@光子晶体在暴露于乙醇蒸汽之前和之后的UV-Vis光谱(a);ZIF-8@光子晶体暴露于甲醇蒸汽之前和之后的UV-Vis光谱(b)[41]

    Figure  13.  UV-Vis spectra of HKUST-1@photonic crystals before and after exposure to ethanol vapor (a); UV-Vis spectra of ZIF-8@photonic crystals before and after exposure to methanol vapor (b)[41]

    图  14  ZIF@PS阵列(a)和ZIF-8阵列(b)的响应时间[42]

    Figure  14.  Response time of ZIF@PS array (a) and ZIF-8 array (b)[42]

    图  15  吸收CS2分子前后,基于HKUST-1的光子晶体复合材料的近红外区吸收峰变化(a);基于HKUST-1的光子晶体复合材料在近红外区的吸收峰偏移大小和CS2称线性正相关(b);基于HKUST-1的光子晶体复合材料对不同蒸汽的传感(c)[26]

    Figure  15.  Changes of absorption peaks in the near infrared region of HKUST- based photonic crystal composites before and after absorption of CS2 molecules (a); Absorption peak deviation of HKUST-1 based photonic crystal composites in the near infrared region is linear positive correlation with CS2 (b); Sensing of different vapors by photonic crystal composites based on HKUST-1 (c)[26]

  • [1] FURUKAWA H, CORDOVA K E, O'KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science,2013,341(6149):1230444. doi: 10.1126/science.1230444
    [2] JIANG Y, RYU G H, JOO S H, et al. Porous two-dimensional monolayer metal-organic framework material and its use for the size-selective separation of nanoparticles[J]. ACS Applied Materials & Interfaces,2017,9(33):28107-28116.
    [3] DHAKSHINAMOORTHY A, ASIRI A M, GARCIA H. Metal-organic framework (MOF) compounds: Photocatalysts for redox reactions and solar fuel production[J]. Angewandte Chemie International Edition,2016,47(25):5414-5445.
    [4] LI L M, JIAO X L, CHEN D R, et al. One-step asymmetric growth of continuous metal-organic framework thin films on two-dimensional colloidal crystal arrays: A facile approach toward multifunctional superstructures[J]. Crystal Growth & Design,2016,16(5):2700-2707.
    [5] MOREIRA M A, SANTOS J C, FERREIRA A F P, et al. Reverse shape selectivity in the liquid-phase adsorption of xylene isomers in zirconium terephthalate MOF UiO-66[J]. Langmuir the Acs Journal of Surfaces & Colloids,2012,28(13):5715-5723.
    [6] ZHENG Y, CHU F C, ZHANG B, et al. Ultrahigh adsorption capacities of carbon tetrachloride on MIL-101 and MIL-101/graphene oxide composites[J]. Microporous and Mesoporous Materials,2018,263:71-76. doi: 10.1016/j.micromeso.2017.12.007
    [7] EDDAOUDI M, KIM J, ROSI N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science,2002,295(5554):469-472. doi: 10.1126/science.1067208
    [8] RAN J U, XIAO L H, WANG W, et al. ZIF-8@polyoxometalate derived Si-doped ZnWO4@ZnO nanocapsules with open-shaped structures for efficient visible light photocatalysis[J]. Chemical Communications,2018,54(98):13869. doi: 10.1039/C8CC90513D
    [9] CHEN Y, LI H, MA Q, et al. ZIF-8 derived hexagonal-like α-F3/ZnO/Au nanoplates with tunable surface heterostructures for superior ethanol gas-sensing performance[J]. Applied Surface Science,2018,439:649-659. doi: 10.1016/j.apsusc.2018.01.084
    [10] LUO Y C, FAN S Y, YU W Q, et al. Fabrication of Au25(SG)18–ZIF-8 nanocomposites: A facile strategy to position Au25(SG)18 nanoclusters inside and outside ZIF-8[J]. Advanced Materials,2018,30(6):1704576.
    [11] KIM E Y, KIM H S, KIM D H, et al. Preparation of mixed matrix membranes containing ZIF-8 and UiO-66 for multicomponent light gas separation[J]. Crystals,2019,9(1):15.
    [12] GARIBAY S J, COHEN S M. Isoreticular synthesis and modification of frameworks with the UiO-66 topology[J]. Chemical Communications,2010,46(41):7700-7702. doi: 10.1039/c0cc02990d
    [13] ABID H R, ANG H M, WANG S B. Effects of ammonium hydroxide on the structure and gas adsorption of nanosized Zr-MOFs (UiO-66)[J]. Nanoscale,2012,4(10):3089-3094. doi: 10.1039/c2nr30244f
    [14] FEREY G, MELLOT D C, SERRE C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science,2005,309(5743):2040-2042. doi: 10.1126/science.1116275
    [15] LI X, ZHANG J, SHEN W L, et al. Rapid synthesis of metal-organic frameworks MIL-53(Cr)[J]. Materials Letters,2019,255:126519.
    [16] HALLIAN L, MOHAMED E, M O'KEEFE, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature,1999,402(6759):276-279. doi: 10.1038/46248
    [17] LI T, FAREEALL J. Electrochemical investigation of the rate-limiting mechanisms for trichloroethylene and carbon tetrachloride reduction at iron surfaces[J]. Environmental Science & Technology,2001,35(17):3560-3565.
    [18] KITADAWA S, KITAURA R, NORO S. Functional porous coordination polymers[J]. Angewandte Chemie-International Edition,2004,43(18):2334-2375. doi: 10.1002/anie.200300610
    [19] YABLONNVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters,1987,58(20):2059. doi: 10.1103/PhysRevLett.58.2059
    [20] JOHN S. Strong localization of photons in certain disordered dielectric super lattices[J]. Physical Review Letters,1987,58(23):2486-2489. doi: 10.1103/PhysRevLett.58.2486
    [21] ABRAM I, BOURDON G. Photonic-well microcavities for spontaneous emission control[J]. Physical Review A,1996,54(4):3476-3479. doi: 10.1103/PhysRevA.54.3476
    [22] CHEN B, TANG T T, CHEN H. Compact flexible photonic crystal waveguides and waveguide bends[J]. Optics Express,2009,17(7):5033-5038. doi: 10.1364/OE.17.005033
    [23] NAIR R V, VIJAYA R. Photonic crystal sensors: An overview[J]. Progress in Quantum Electronics,2010,34(3):89-134. doi: 10.1016/j.pquantelec.2010.01.001
    [24] FENZL C, HIRSCH T, WOLFBEIS O S. Photonic crystals for chemical sensing and biosensing[J]. Angewandte Chemie- International Edition,2014,53(13):3318-3335. doi: 10.1002/anie.201307828
    [25] LU G, HUPP J T. Metal-organic frameworks as sensors: A ZIF-8 based Fabry-Pérot device as a selective sensor for chemical vapors and gases[J]. Journal of the American Chemical Society,2010,132(23):7832. doi: 10.1021/ja101415b
    [26] LU G, FARHA O K, KRENO L E, et al. Fabrication of metal-organic framework-containing silica-colloidal crystals for vapor sensing[J]. Advanced Materials,2011,23(38):4449-4452. doi: 10.1002/adma.201102116
    [27] HINTERHOLZINGER F M, RANFT A, FECKL J M, et al. One-dimensional metal–organic framework photonic crystals used as platforms for vapor sorption[J]. Journal of Materials Chemistry,2012,22(20):10356-10362. doi: 10.1039/c2jm15685g
    [28] DARUNTE L A, OETOMO A D, WALTON K S, et al. Direct air capture of CO2 using amine functionalized MIL-101(Cr)[J]. Acs Sustainable Chemistry & Engineering,2016,4(10):5761-5768.
    [29] TRAN U P N, Le K K A, PHAN N T S. Expanding applications of metal-organic frameworks: Zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction[J]. Acs Catalysis,2011,1(2):120-127. doi: 10.1021/cs1000625
    [30] 张雯. UiO-66合成、改性及氢气吸附性能研究[D]. 大连: 大连理工大学, 2019.

    ZHANG Wen. The preparation and modification of MOF UiO-66 for hydrogen storage[D]. Dalian: Dalian University of Techonology, 2019(in Chinese).
    [31] LOERA S S, OLIVER T M A, DE L L N M, et al. Electrochemical behavior of [Cu3(BTC)2] metal-organic framework: The effect of the method of synthesis[J]. Journal of Alloys and Compounds,2012,540:113-120. doi: 10.1016/j.jallcom.2012.06.030
    [32] LU G, LI S Z, GUO Z, et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation[J]. Nature Chemistry,2012,4(4):310-316. doi: 10.1038/nchem.1272
    [33] ZHAO J J, NUNN W T, LEMAIRE P C, et al. Facile conversion of hydroxy double salts to metal-organic frameworks using metal oxide particles and atomic layer deposition thin-film templates[J]. Journal of the American Chemical Society,2015,137(43):13756-13759. doi: 10.1021/jacs.5b08752
    [34] GHANBARIAN M, ZEINALI S, MOSTAFAVI A. A novel MIL-53(Cr-Fe)/Ag/CNT nanocomposite based resistive sensor for sensing of volatile organic compounds[J]. Sensors & Actuators B Chemical,2018,267:381-391.
    [35] TSURUOKA T, FURUKAWA S, TAKASHIMA Y, et al. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth[J]. Angewandte Chemie-International Edition,2009,48(26):4739-4743. doi: 10.1002/anie.200901177
    [36] SANIL E S, CHO L H, LEE S K, et al. Size and morphological control of a metal-organic framework Cu-BTC by variation of solvent and modulator[J]. Journal of porous materials,2015,22(1):171-178. doi: 10.1007/s10934-014-9883-7
    [37] LUO W Y, ZHENG Y, YAN J, et al. Three-imensional ordered structures of metal organic frameworks for carbon tetrachloride sensing and comparative study[J]. Chemistryselect,2019,4(13):3936-3939. doi: 10.1002/slct.201803706
    [38] XIA Y N, GATES B, YIN Y D, et al. Monodispersed colloidal spheres: Old materials with new applications[J]. Advanced Materials,2000,12(10):693-713. doi: 10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J
    [39] 巩柳廷. ZIF-8光子晶体的制备及其光学传感性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    GONG Liuting. Preparation and its optical sensing properties of Zif-8 photonic crystal[D]. Haerbin: Harbin Institude of Technology, 2019(in Chinese).
    [40] WU Y N, LI F T, XU Y X, et al. Facile fabrication of photonic MOF films through stepwise deposition on a colloid crystal substrate[J]. Chemical Communications,2011,47(36):10094-10096. doi: 10.1039/c1cc12563j
    [41] WU Y N, LI F T, ZHU W, et al. Metal-organic frameworks with a three-dimensional ordered macroporous structure: Dynamic photonic materials[J]. Angewandte Chemie-International Edition,2011,50(52):12518-12522. doi: 10.1002/anie.201104597
    [42] 罗文洋. 基于MOF材料的三维有序超结构氯代气体蒸汽传感研究[D]. 北京: 北京交通大学, 2019.

    LUO Wenyang. Three-dimensonal ordered superstructure chlorination gas vapor sening based on MOF[D]. Beijing: Beijing Jiaotong University, 2019(in Chinese).
  • 加载中
图(15)
计量
  • 文章访问数:  1378
  • HTML全文浏览量:  689
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-15
  • 录用日期:  2021-05-20
  • 网络出版日期:  2021-06-01
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回