留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CF-B4C/Al中子吸收复合材料的微观组织及力学行为

孙致平 张翠英 陈洪胜

孙致平, 张翠英, 陈洪胜. CF-B4C/Al中子吸收复合材料的微观组织及力学行为[J]. 复合材料学报, 2022, 39(2): 769-776. doi: 10.13801/j.cnki.fhclxb.20210529.001
引用本文: 孙致平, 张翠英, 陈洪胜. CF-B4C/Al中子吸收复合材料的微观组织及力学行为[J]. 复合材料学报, 2022, 39(2): 769-776. doi: 10.13801/j.cnki.fhclxb.20210529.001
SUN Zhiping, ZHANG Cuiying, CHEN Hongsheng. Microstructure and mechanical behavior of CF-B4C/Al neutron absorbing composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 769-776. doi: 10.13801/j.cnki.fhclxb.20210529.001
Citation: SUN Zhiping, ZHANG Cuiying, CHEN Hongsheng. Microstructure and mechanical behavior of CF-B4C/Al neutron absorbing composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 769-776. doi: 10.13801/j.cnki.fhclxb.20210529.001

CF-B4C/Al中子吸收复合材料的微观组织及力学行为

doi: 10.13801/j.cnki.fhclxb.20210529.001
基金项目: 产学研横向科研项目(RH2000002823);国家自然科学基金(51805358);常州工程职业技术学院高层次人才科研启动基金(11130900118003)
详细信息
    通讯作者:

    陈洪胜,博士,副教授,硕士生导师,研究方向为先进金属基复合材料制备及成形技术 E-mail:chenhongsheng@tyut.edu.cn

  • 中图分类号: TB333

Microstructure and mechanical behavior of CF-B4C/Al neutron absorbing composites

  • 摘要: 基于B4C良好的中子吸收性能和碳纤维(CF)慢化中子的性能,采用真空热压烧结方法制备了集结构与功能一体具有不同CF含量的CF-B4C混合增强6061Al基复合材料,并对热轧后的组织形貌和力学性能进行分析。结果表明,大变形量热轧后B4C颗粒和CF分布较均匀,没有出现大面积的聚集现象,但是少量B4C颗粒和CF在轧制压力的作用下发生了断裂。当变形量达到60%时,复合材料的抗拉强度可达(265±3) MPa,与6061Al合金的抗拉强度相比,不同厚度的CF-B4C/Al复合材料的抗拉强度分别提高了80%和112%。随着CF含量的增加,CF-B4C/Al复合材料的强度和延伸率均减小。当CF含量达到5wt%时,断裂的主要原因是有纤维的聚集及纤维沿断裂方向排布。

     

  • 图  1  真空热压烧结原理图

    Figure  1.  Schematic diagram of vacuum hot pressing sintering

    FAPAS—Field activated and pressure assisted synthesis

    图  2  热压烧结工艺路线图

    Figure  2.  Process roadmap of hot pressing sintering

    图  3  60%变形量下碳纤维(CF)-B4C/Al复合材料的SEM图像:(a) CF断裂;(b) B4C颗粒断裂

    Figure  3.  SEM images of carbon fiber (CF)-B4C/Al composites with 60% deformation: (a) CF breakage; (b) B4C particle fracture

    图  4  60%变形量下CF-B4C/Al复合材料元素分布图

    Figure  4.  Element distribution map of CF-B4C/Al composites under 60% deformation

    图  5  B4C/Al、CF/Al界面处的线扫描图谱

    Figure  5.  Line-scanning atlas of the interface in B4C/Al and CF/Al

    图  6  CF-B4C/Al复合材料的XRD图谱

    Figure  6.  XRD patterns of CF-B4C/Al composites

    图  7  CF-B4C/Al复合材料的应力-应变曲线

    Figure  7.  Stress-strain curves of CF-B4C/Al composites

    PR—Parallel rolling; VR—Vertical rolling

    图  8  CF-B4C/Al复合材料的应力-应变曲线

    Figure  8.  Stress-strain curves of CF-B4C/Al composites

    图  9  热轧后CF-B4C/Al复合材料的断口形貌:(a)纤维拔出;(b)颗粒断裂;(c)纤维断裂;(d)纤维聚集;(e)纤维横向排布;(f)纤维脱粘断裂

    Figure  9.  Fracture morphologies of CF-B4C/Al composites after hot rolling: (a) Fiber pull-out; (b) Particle fracture; (c) Fiber breakage; (d) Fiber aggregation; (e) Lateral fiber layout; (f) Fiber debonding fracture

    图  10  CF-B4C/Al复合材料的断裂机理示意图

    Figure  10.  Schematic of fracture mechanism of CF-B4C/Al composites

    表  1  6061铝合金化学成分

    Table  1.   Chemical composition of 6061Al alloy wt%

    SiFeCuMnMgCrZnTiAl
    0.6 0.7 0.25 0.15 0.8 0.1 0.25 0.15 Rest
    下载: 导出CSV

    表  2  B4C化学成分

    Table  2.   Chemical composition of B4C wt%

    BCCaFeSiFCl
    80.018.10.31.00.50.0250.075
    下载: 导出CSV

    表  3  CF-B4C/Al复合材料的拉伸性能

    Table  3.   Tensile properties of CF-B4C/Al composites

    Carbon fiber content/wt%Deformation/%σ0.2/MPaσUTS/MPaε/%
    1 40 154.3 198.2 2.92
    1 50 161 216.7 2.88
    1 60 184.6 268 1.89
    5 40 132.7 175.6 2.18
    5 50 140.5 182.3 2.36
    5 60 142.3 185.2 2.78
    Notes: σ0.2—Yield strength; σUTS—Ultimate strength; ε—Ultimate elongation after aging.
    下载: 导出CSV
  • [1] 曹玉鹏, 戴志强, 刘建涛, 等. 金属基复合材料研究进展及展望[J]. 铸造技术, 2017, 38(10):8-11.

    CAO Yupeng, DAI Zhiqiang, LIU Jiantao, et al. Research progress and prospect of metal matrix composite materials[J]. Foundry Technology,2017,38(10):8-11(in Chinese).
    [2] SATHISH K G, RAJAGURU K, RAMKUMAR R, et al. Evaluation of Al-C-B4C composites fabricated by powder metallurgy for hardness and wear behaviour[J]. Materials Today: Proceedings,2021,37:2991-2996.
    [3] MEI X M, MEI Q S, LI C L, et al. Enhanced strengthening of Al-SiC nanocomposites containing a uniform dispersion of dense nanoparticles fabricated by a hybrid accumulative roll-bonding process[J]. Materials Science & Engineering A,2020,09:140-217.
    [4] KULDEEP Pal, KUMAR Navin, RAJNISH Kurchania, et al. Study of structural and mechanical behaviour of Al-ZrO2 metal matrix nanocomposites prepared by powder metallurgy method[J]. Materials Today: Proceedings,2020,2:2714-2719.
    [5] SONG J I, SAN K H. Effect of volume fraction of carbon fibers on wear behavior of Al/Al2O3/C hybrid metal matrix composites[J]. Composite Structures,1997,39(4):309-318.
    [6] SUN W, DUAN C, YIN W. Modeling of force and tempera-ture in cutting of particle reinforced metal matrix compo-sites considering particle effects[J]. Journal of Materials Processing Technology,2021,290:116991. doi: 10.1016/j.jmatprotec.2020.116991
    [7] AVCOLU S, BULDU M, KAYA F, et al. Processing and properties of boron carbide (B4C) reinforced LDPE composites for radiation shielding[J]. Ceramics International,2020,46(1):343-352.
    [8] CELLI M, GRAZZI F, ZOPPI M. A new ceramic material for shielding pulsed neutron scattering instruments[J]. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment,2006,565(2):861-863. doi: 10.1016/j.nima.2006.05.234
    [9] ZHANG P, LI Y, WANG W, et al. The design, fabrication and properties of B4C/Al neutron absorbers[J]. Journal of Nuclear Materials,2013,437(1-3):350-358.
    [10] KANG P C, CAO Z W, WU G H, et al. Phase identification of Al–B4C ceramic composites synthesized by reaction hot-press sintering[J]. International Journal of Refractory Metals & Hard Materials,2010,28(2):297-300.
    [11] LI Y Z, WANG Q Z, WANG W G, et al. Effect of interfacial reaction on age-hardening ability of B4C/6061Al composites[J]. Materials Science & Engineering A,2015,620:445-453.
    [12] JIANG L T, XU Z G, FEI Y K, et al. The design of novel neutron shielding (Gd + B4C)/6061Al composites and its properties after hot rolling[J]. Composites,2019,168:183-194.
    [13] CHEN Hongsheng, WANG Wenxian, LI Yuli, et al. Microstructure evolution and mechanical properties of B4C/6061Al neutron absorber composite sheets fabricated by powder metallurgy[J]. Journal of Alloys and Compounds,2015,632(6):342-351.
    [14] WANG Peng, TANG Xiaobin, CHAI Hao, et al. Design, fabrication, and properties of a continuous carbon-fiber reinforced Sm2O3/polyimide gamma ray/neutron shielding material[J]. Fusion Engineering and Design,2015,101(9):218-225.
    [15] UĞUR Akbaba, AHMET Emre Kasapoğlu, EMRE Gür, et al. Gamma and neutron irradiation effects on multi-walled carbon nanotubes[J]. Materials Diamond & Related Materials,2018,87(6):242-247.
    [16] CHEN Huan, ZENG Fanhao, LI Wenjie, et al. Effect of interfacial residual thermal stress on the fracture behavior of Cf/B4C composites prepared by spark plasma sintering[J]. Ceramics International,2019,46(4):4587-4594.
    [17] FARHAD Adibpur, SEYED Ali Tayebifard, MOHAMMAD Zakeri, et al. Co-reinforcing of ZrB2-SiC ceramics with optimized ZrC to Cf ratio[J]. Ceramics International,2020,46(1):22661-22673.
    [18] MAHAVIRADHAN N, SIVAGANESAN S, SRAVYA N P, et al. Experimental investigation on mechanical properties of carbon fiber reinforced aluminum metal matrix composite[J]. Materials Today: Proceedings,2020,39:743-747.
    [19] ZHANG Peng, LI Jing, WANG Wenxian, et al. Design, shielding mechanism and tensile property of a novel (B4C+6061Al)/Cf/6061Al laminar neutron-shielding composite[J]. Vacuum,2020,177:109383.
    [20] CHEN H S, WANG W X, LI Y L, et al. The design, microstructure and tensile properties of B4C particulate reinforced 6061Al neutron absorber composites[J]. Journal of Alloys and Compounds,2015,632:23-29. doi: 10.1016/j.jallcom.2015.01.048
    [21] SREE MANU K M, AJAY RAAG L, RAJAN T P D, et al. Self-lubricating bidirectional carbon fiber reinforced smart aluminum composites by squeeze infiltration process[J]. Journal of Materials Science & Technology,2019,35(11):2559-2569.
    [22] FENG Lei, LI Kezhi, LU Jinhua, et al. Effect of growth temperature on carbon nanotube grafting morphology and mechanical behavior of carbon fibers and carbon/carbon composites[J]. Journal of Materials Science & Technology,2017,33(1):65-70.
    [23] ZHOU Jiming, ZHONG Kangdi, ZHAO Chentong, et al. Effect of carbon nanotubes grown temperature on the fracture behavior of carbon fiber reinforced magnesium matrix composites: Interlaminar shear strength and tensile strength[J]. Ceramics International,2020,47(5):6597-6607.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  832
  • HTML全文浏览量:  790
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-23
  • 修回日期:  2021-05-05
  • 录用日期:  2021-05-07
  • 网络出版日期:  2021-05-31
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回