留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MXene/硅橡胶复合材料的制备及导热性能

陈德家 姚艳青 赵佳 柴春鹏

陈德家, 姚艳青, 赵佳, 等. MXene/硅橡胶复合材料的制备及导热性能[J]. 复合材料学报, 2022, 39(3): 1036-1043. doi: 10.13801/j.cnki.fhclxb.20210528.001
引用本文: 陈德家, 姚艳青, 赵佳, 等. MXene/硅橡胶复合材料的制备及导热性能[J]. 复合材料学报, 2022, 39(3): 1036-1043. doi: 10.13801/j.cnki.fhclxb.20210528.001
CHEN Dejia, YAO Yanqing, ZHAO Jia, et al. Preparation and thermal conductivity of MXene/silicone rubber composites[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1036-1043. doi: 10.13801/j.cnki.fhclxb.20210528.001
Citation: CHEN Dejia, YAO Yanqing, ZHAO Jia, et al. Preparation and thermal conductivity of MXene/silicone rubber composites[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1036-1043. doi: 10.13801/j.cnki.fhclxb.20210528.001

MXene/硅橡胶复合材料的制备及导热性能

doi: 10.13801/j.cnki.fhclxb.20210528.001
详细信息
    通讯作者:

    柴春鹏,博士,副教授,硕士生导师,研究方向为树脂基复合材料、吸波材料等 E-mail:chaicp@bit.edu.cn

  • 中图分类号: TB332;TQ333.93

Preparation and thermal conductivity of MXene/silicone rubber composites

  • 摘要: 随着5G时代的来临,各类电子元器件发热功率明显增大。因此,电子元器件及设备的散热问题亟待解决,使得对高导热材料的需求日益迫切。为此,利用化学刻蚀法制备二维MXene材料(Ti3C2Tx),采用标准溶液共混法,将制备得到的MXene与硅橡胶复合,得到MXene/硅橡胶复合材料,研究了MXene添加量对MXene/硅橡胶导热性能的影响。使用SEM和XRD对MXene进行结构表征,并测试纯硅橡胶与MXene/硅橡胶复合材料的力学性能、导热导电性能和热稳定性等。结果表明:化学刻蚀法成功制备了呈经典“手风琴”层状结构的MXene,当MXene添加量为2.00wt%时,MXene/硅橡胶复合材料的热导率最高可达1.32 W/(m·K),是纯硅橡胶的4.55倍,此时,体积电阻率降低4个数量级,力学性能和热稳定性也得到了显著提高。

     

  • 图  1  聚二甲基硅氧烷(PDMS)结构式

    Figure  1.  Polydimethylsiloxane (PDMS) structure formula

    图  2  MXene表面活性基团与硅氧烷键的相互作用

    Figure  2.  Interaction between MXene surface active groups and siloxane linkage

    图  3  硅橡胶与MXene/硅橡胶复合材料的数码照片

    Figure  3.  Digital photos of silicone rubber and MXene/silicone rubber composites

    图  4  Ti3AlC2粉末和MXene/硅橡胶复合材料断面的SEM图像

    Figure  4.  SEM images of the cross section of Ti3AlC2 powder and MXene/silicone rubber composites

    图  5  MXene/硅橡胶复合材料中Ti元素的EDS元素映射谱图

    Figure  5.  Energy spectra of EDS mapping spectra of Ti elements in MXene/silicone rubber composites

    图  6  MXene粉末和Ti3AlC2粉末的XRD图谱

    Figure  6.  XRD patterns of MXene powder and Ti3AlC2 powder

    图  7  MXene/硅橡胶复合材料的导热系数

    Figure  7.  Thermal conductivity of MXene/silicone rubber composites

    图  8  MXene与硅橡胶的串联和并联热阻模型

    Figure  8.  Series and parallel thermal resistance models of MXene and silicone rubber

    图  9  纯硅橡胶与MXene添加量为2.00wt%的MXene/硅橡胶复合材料在N2中的TGA曲线

    Figure  9.  TGA curves of pure silicone rubber and MXene/silicone rubber composite with 2.00wt% MXene content in N2

    表  1  MXene添加量对MXene/硅橡胶复合材料力学性能的影响

    Table  1.   Effect of MXene content on mechanical properties of MXene/silicone rubber composites

    Content of
    MXene/wt%
    Elongation
    at break/%
    Tensile
    strength/MPa
    0 107±2.4 0.54±0.02
    0.25 118±2.6 0.78±0.02
    0.50 127±3.0 1.03±0.03
    0.75 140±3.1 1.25±0.04
    1.00 161±3.3 1.38±0.06
    1.25 173±3.6 1.63±0.07
    1.50 170±3.1 1.70±0.07
    1.75 166±2.8 2.02±0.09
    2.00 162±2.8 2.52±0.10
    下载: 导出CSV

    表  2  MXene/硅橡胶复合材料的体积电阻率

    Table  2.   Volume resistivity of MXene/silicone rubber composites

    Content of MXene/wt%00.250.500.751.001.251.501.752.00
    Volume resistivity/(1011 Ω·cm)475.70327.57160.7687.0610.211.630.690.200.07
    下载: 导出CSV
  • [1] 刘旺冠, 郭建华, 蒋兴华. 填充型导热绝缘硅橡胶的研究进展[J]. 弹性体, 2020, 30(5):55-63. doi: 10.3969/j.issn.1005-3174.2020.05.013

    LIU Wangguan, GUO Jianhua, JIANG Xinghua. Advances in research on thermal insulating silicone rubber[J]. Elastomer,2020,30(5):55-63(in Chinese). doi: 10.3969/j.issn.1005-3174.2020.05.013
    [2] DAI W, MA T F, YAN Q W, et al. Metal-level thermally conductive yet soft graphene thermal interface materials[J]. ACS Nano,2019,13(10):11561-11571. doi: 10.1021/acsnano.9b05163
    [3] 刘少刚, 王李波, 王晓龙, 等. 高导热网络聚合物基复合材料的研究进展[J]. 中国塑料, 2019, 33(8):127-135.

    LIU Shaogang, WANG Libo, WANG Xiaolong, et al. Research progress of polymer matrix composites with high thermal conductivity network[J]. China Plastics,2019,33(8):127-135(in Chinese).
    [4] ZHANG F, FENG Y Y, FENG W. Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties, and mechanisms[J]. Materials Science & Engineering R: Reports,2020,142:100580.
    [5] 杜伯学, 孔晓晓, 肖萌, 等. 高导热聚合物基复合材料研究进展[J]. 电工技术学报, 2018, 33(14):3149-3159.

    DU Boxue, KONG Xiaoxiao, XIAO Meng, et al. Research progress of polymer matrix composites with high thermal conductivity[J]. Transactions of China Electrotechnical Society,2018,33(14):3149-3159(in Chinese).
    [6] WANG X, DOU W. Preparation of graphite oxide (GO) and the thermal stability of silicone rubber/GO nanocompo-sites[J]. Thermochimica Acta,2011,529:25-28.
    [7] ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials,2017,2(2):1-17.
    [8] 郑伟, 孙正明, 张培根, 等. MXene的研究进展[J]. 材料导报, 2017, 31(5):1-14. doi: 10.11896/j.issn.1005-023X.2017.05.001

    ZHENG Wei, SUN Zhengming, ZHANG Peigen, et al. Research progress of MXene[J]. Material Guide,2017,31(5):1-14(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.05.001
    [9] FENG A L, HOU T Q, JIA Z R, et al. Preparation and characterization of epoxy resin filled with Ti3C2Tx MXene nanosheets with excellent electric conductivity[J]. Nanomaterials,2020,10(1):162.
    [10] MA T M, SONG G C, WANG B, et al. Effective usage of 2D MXene nanosheets as solid lubricant-Influence of contact pressure and relative humidity[J]. Applied Surface Science,2020,531:147311.
    [11] LIU R, LI W. High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/poly(vinyl alcohol) (PVA) composites[J]. ACS Omega,2018,3:2609-2617. doi: 10.1021/acsomega.7b02001
    [12] 刘超, 李茜, 郝丽芬, 等. MXene的功能化改性及其应用研究进展[J]. 复合材料学报, 2021, 38(4):1020-1028.

    LIU Chao, LI Qian, HAO Lifen, et al. Progress in functionalized modification of MXene and its application[J]. Acta Materiae Compositae Sinica,2021,38(4):1020-1028(in Chinese).
    [13] SONG D, LI X, LI X P, et al. Hollow-structured MXene-PDMS composites as flexible, wearable and highly bendable sensors with wide working range[J]. Journal of Colloid and Interface Science,2019,555:751-758. doi: 10.1016/j.jcis.2019.08.020
    [14] HE W, SOHN M, MA R, et al. Flexible single-electrode triboelectric nanogenerators with MXene/PDMS composite film for biomechanical motion sensors[J]. Nano Energy,2020,78:105383.
    [15] CAI Y W, ZHANG X N, WANG G G, et al. A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for E-skin[J]. Nano Energy,2021,81:105663.
    [16] CAO Y, DENG Q H, LIU Z D, et al. Enhanced thermal properties of poly(vinylidene fluoride) composites with ultrathin nanosheets of MXene[J]. RSC Advances,2017,7(33):20494-20501. doi: 10.1039/C7RA00184C
    [17] LI J, DU Y, HUO C, et al. Thermal stability of two-dimensional Ti2C nanosheets[J]. Ceramics International,2015,41(2):2631-2635. doi: 10.1016/j.ceramint.2014.10.070
    [18] 中国国家标准化管理委员会. GB/T 528—2009硫化橡胶或热塑性橡胶拉伸应力应变性能的测定[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. GB/T 528—2009 Rubber, vulcanized or thermoplastic—Determination of tensile stress-strain properties[S]. Beijing: China Standards Press, 2009(in Chinese).
    [19] 中国国家标准化管理委员会. GB/T 1410—2006固体绝缘材料体积电阻率和表面电阻率试验方法[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People’s Republic of China. GB/T 1410—2006 Methods of test for volume resistivity and surface resistivity of solid electrical insulating materials[S]. Beijing: China Standards Press, 2006(in Chinese).
    [20] International Organization for Standardization. Plastics: Determination of thermal conductivity and thermal diffusivity Part 2: Transient plane heat source (hot disc) method: ISO 22007-2: 2008[S]. Switzerland: International Organization for Standardization, 2008.
    [21] 赵敬棋, 孟凡成, 申景博, 等. 导热高分子复合材料的研究进展[J]. 化学工业与工程, 2020, 37(3):67-73.

    ZHAO Jingqi, MENG Fancheng, SHEN Jingbo, et al. Research progress of thermally conductive polymer compo-sites[J]. Chemical Industry and Engineering,2020,37(3):67-73(in Chinese).
    [22] MU Q H, FENG S Y. Thermal conductivity of graphite/silicone rubber prepared by solution intercalation[J]. Thermochimica Acta,2007,462(1-2):70-75. doi: 10.1016/j.tca.2007.06.006
    [23] TANG J J, YAO W, LI W L, et al. Study on a novel composite coating based on PDMS doped with modified graphene oxide[J]. Journal of Coatings Technology and Research,2018,15(2):375-383. doi: 10.1007/s11998-017-9991-9
    [24] 索军营, 陈雅素, 文友谊, 等. 硅烷改性石墨烯纳米片复合硅橡胶的性能研究[J]. 有机硅材料, 2020, 34(6):6-15.

    SUO Junying, CHEN Yasu, WEN Youyi, et al. Properties of silane modified graphene nanocrystalline composite silicone rubber[J]. Organic Silicon Materials,2020,34(6):6-15(in Chinese).
    [25] 吴其光, 张海燕, 张琇滨. 碳包覆纳米铜颗粒/硫化硅橡胶导热复合材料的制备及性能[J]. 高分子材料科学与工程, 2016, 32(1):142-146.

    WU Qiguang, ZHANG Haiyan, ZHANG Xiubin. Preparation and properties of carbon coated copper nanoparticle/vulcanized silicone rubber thermal conductive composites[J]. Polymer Materials Science and Engineering,2016,32(1):142-146(in Chinese).
    [26] 陈玉琦, 冯亚凯, 赵敬棋, 等. 导热硅橡胶应用问题研究进展[J]. 化工新型材料, 2017, 45(6):244-246.

    CHEN Yuqi, FENG Yakai, ZHAO Jingqi, et al. Research progress on application of thermal conductive silicone rubber[J]. New Chemical Caterials,2017,45(6):244-246(in Chinese).
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  2010
  • HTML全文浏览量:  726
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-06
  • 修回日期:  2021-05-14
  • 录用日期:  2021-05-24
  • 网络出版日期:  2021-05-28
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回