留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压边力对非平衡平纹机织物预制体成型作用规律

孔令国 王继辉 陈宏达 倪爱清 张学文

孔令国, 王继辉, 陈宏达, 等. 压边力对非平衡平纹机织物预制体成型作用规律[J]. 复合材料学报, 2022, 39(4): 1798-1812. doi: 10.13801/j.cnki.fhclxb.20210526.003
引用本文: 孔令国, 王继辉, 陈宏达, 等. 压边力对非平衡平纹机织物预制体成型作用规律[J]. 复合材料学报, 2022, 39(4): 1798-1812. doi: 10.13801/j.cnki.fhclxb.20210526.003
KONG Lingguo, WANG Jihui, CHEN Hongda, et al. Influence of blank-holder force on the draping process of unbalanced plain woven fabric preform[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1798-1812. doi: 10.13801/j.cnki.fhclxb.20210526.003
Citation: KONG Lingguo, WANG Jihui, CHEN Hongda, et al. Influence of blank-holder force on the draping process of unbalanced plain woven fabric preform[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1798-1812. doi: 10.13801/j.cnki.fhclxb.20210526.003

压边力对非平衡平纹机织物预制体成型作用规律

doi: 10.13801/j.cnki.fhclxb.20210526.003
基金项目: 武汉理工大学自主创新研究基金项目(2020IVA085)
详细信息
    通讯作者:

    陈宏达,博士,研究方向为聚合物基复合材料 E-mail:hongdachen@whut.edu.cn

  • 中图分类号: TB332

Influence of blank-holder force on the draping process of unbalanced plain woven fabric preform

  • 摘要: 为研究压边力对非平衡玻璃纤维平纹机织物预制体铺覆成型的作用规律,针对非平衡平纹机织物在成型过程中的大变形特征,基于非正交材料本构,建立织物面内材料变形本构模型;同时考虑面外弯曲刚度,结合壳单元,建立织物的膜(面内变形)-壳(面外变形)双层模型;利用商业有限元软件ABAQUS,结合实验方法,研究织物在不同压边力条件下的成型规律。结果表明,实验组中预制体的纤维剪切角随压边力的增加而增大;摩擦系数设置对有限元模型的模拟结果有重要影响,随着摩擦系数增大,预制体的纤维剪切角随之增大,摩擦系数为0.20时的模拟结果与实验结果最接近;考虑织物弯曲刚度的膜-壳双层单元模型的模拟结果与实验结果基本一致,而单层膜单元模型的模拟结果精度相对较低。

     

  • 图  1  单轴拉伸试样

    Figure  1.  Sample of uniaxial tension experiment

    图  2  单轴拉伸实验

    Figure  2.  Uniaxial tension experiment

    图  3  玻璃纤维平纹机织物的单轴拉伸载荷-位移曲线

    Figure  3.  Uniaxial tensile load-displacement curves of glass fiber plain woven fabric

    图  4  镜框剪切实验

    Figure  4.  Picture frame test

    图  5  玻璃纤维平纹机织物的镜框剪切载荷-位移曲线

    Figure  5.  Picture frame test load-displacement curves of glass fiber plain woven fabric

    图  6  镜框剪切实验几何原理

    Figure  6.  Principle of picture frame test

    γ—Shear angle of fabric; Lframe—Picture frame arm length; d—Displacement of fabric; F—Tensile load; θ—Angle of picture frame

    图  7  织物的悬臂测试原理

    Figure  7.  Principle of cantilever test for fabric

    l—Bending length of a fabric

    图  8  平纹机织物的悬臂测试

    Figure  8.  Cantilever test for plain woven fabric

    图  9  玻璃纤维平纹机织物经向和纬向的弯曲刚度

    Figure  9.  Flexural rigidity of glass fiber plain woven fabric in warp and weft direction

    图  10  半球形平纹机织物预制体成型装置装配图

    Figure  10.  Assembly drawing of hemispherical plain woven fabric preform forming device

    图  11  半球形平纹机织物预制体成型装置实物图:(a) 冲头;(b) 压边圈;(c) 压边圈圆角;(d) 2.5 kg配重环;(e) 5.0 kg配重环;(f) 模具和框架

    Figure  11.  Picture of hemispherical plain woven fabric preform forming device: (a) Punch; (b) Blank-holder; (c) Filleted corner; (d) 2.5 kg metal ring; (e) 5.0 kg metal ring; (f) Mold and frame

    图  12  试样装配

    Figure  12.  Assemble of sample

    图  13  半球形平纹机织物预制体成型实验

    Figure  13.  Forming experiment of hemispherical plain woven fabric preform

    图  14  各压边力下半球形平纹机织物预制体成型结果:(a) 25 N;(b) 50 N;(c) 75 N;(d ) 100 N

    Figure  14.  Forming results of hemispherical plain woven fabric preform under different blank-holder forces: (a) 25 N; (b) 50 N; (c) 75 N; (d) 100 N

    图  15  平纹机织物剪切应力-剪切角曲线

    Figure  15.  Shear stress-shear angle curve of plain woven fabric

    图  16  平纹机织物镜框剪切模型

    Figure  16.  Model of picture frame test of plain woven fabric

    图  17  半球形平纹机织物预制体成型模型

    Figure  17.  Model of hemispherical plain woven fabric preform draping

    图  18  平纹机织物膜-壳双层模型

    Figure  18.  Membrane-shell model of plain woven fabric

    t—Thickness of fabric

    图  19  织物剪切角提取位置

    Figure  19.  Shear angle extraction position of fabric

    图  20  半球形平纹机织物预制体在不同压边力下的剪切角

    Figure  20.  Shear angles of hemispherical plain woven fabric preform under different blank-holder forces

    图  21  半球形平纹机织物预制体在不同压边力下的变形机制

    Figure  21.  Deformation mechanism of hemispherical plain woven fabric preform under different blank-holder forces

    图  22  平纹机织物镜框剪切模拟变形图:(a) 位移100 mm;(b) 位移120 mm

    Figure  22.  Simulation results of picture frame test: (a) 100 mm displacement; (b) 120mm displacement

    图  23  平纹机织物镜框剪切模拟与实验结果:(a) 织物剪切应力-剪切角曲线;(b) 反作用力-位移曲线

    Figure  23.  Simulation and experiment results of plain woven fabric picture frame test: (a) Shear stress-shear angle curve; (b) Reaction force-displacement curve

    图  24  不同摩擦系数下半球形平纹机织物预制体模拟与实验结果对比

    Figure  24.  Comparison of simulation results of hemispherical plain woven fabric preform under different friction coefficients and experimental results

    图  25  半球形平纹机织物预制体膜-壳双层模型模拟结果:(a) 25 N;(b) 50 N;(c) 75 N;(d) 100 N

    Figure  25.  Simulation results of membrane-shell model of hemispherical plain woven fabric preform: (a) 25 N; (b) 50 N; (c) 75 N; (d) 100 N

    图  26  半球形平纹机织物预制体单层膜模型模拟结果:(a) 25 N;(b) 50 N;(c) 75 N;(d) 100 N

    Figure  26.  Simulation results of single-layer membrane model of hemispherical plain woven fabric preform: (a) 25 N; (b) 50 N; (c) 75 N; (d) 100 N

    图  27  不同压边力下半球形平纹机织物预制体实验与模拟剪切角对比

    Figure  27.  Comparison of experimental and simulated shear angles in hemispherical plain woven fabric preform under different blank-holder forces

    图  28  不同压边力下半球形平纹机织物预制体模拟剪切角:(a) 单层膜模型;(b) 膜-壳模型

    Figure  28.  Simulated shear angles of hemispherical plain woven fabric preform under different blank-holder forces: (a) Single layer membrane model; (b) Membrane-shell model

    图  29  半球形平纹机织物预制体变形轮廓模拟与实验结果对比

    Figure  29.  Simulated boundary profiles of hemispherical plain woven fabric preform compared with the experimental results

    图  30  半球形平纹机织物预制体中纱线屈曲

    Figure  30.  Yarn buckling in hemispherical plain woven fabric preform

    图  31  半球形平纹机织物预制体中纱线屈曲横截面示意图

    Figure  31.  Schematic of yarn buckling cross section in hemispherical plain woven fabric preform

    h—Offset distance of warp yarn

    图  32  半球形平纹机织物预制体局部位移云图:(a)膜-壳模型;(b)单层膜模型

    Figure  32.  Local displacement nephogram of hemispherical plain woven fabric preform: (a) Membrane-shell model; (b) Single layer membrane model

    表  1  无碱玻璃纤维非平衡平纹机织物参数

    Table  1.   Parameters of E-glass fiber unbalanced plain woven fabric

    ParameterFabric
    Weave Plain
    Areal density/(g·m−2) 600
    Warp yarns/cm 2.8
    Weft yarns/cm 2.5
    Yarn thickness/mm 0.6
    Warp yarn width/mm 2.9
    Weft yarn width/mm 2.5
    Fabric image
    下载: 导出CSV

    表  2  玻璃纤维平纹机织物经纬向弯曲长度测试结果

    Table  2.   Bending length of glass fiber plain woven fabric in warp and weft direction

    Number of sampleWarp/mmWeft/mmWeft/mm
    1 118 121 121
    2 120 127 127
    3 118 127 127
    4 117 126 126
    5 120 124 124
    6 118 128 128
    下载: 导出CSV
  • [1] DE LUCA P, LEF BURE P, PICKETT A K. Numerical and experimental investigation of some press forming parameters of two fibre reinforced thermoplastics: APC2-AS4 and PEI-CETEX[J]. Composites Part A: Applied Science and Manufacturing,1998,29(1):101-110.
    [2] BUSSETTA P, CORREIA N. Numerical forming of continuous fibre reinforced composite material: A review[J]. Composites Part A: Applied Science and Manufacturing,2018,113:12-31. doi: 10.1016/j.compositesa.2018.07.010
    [3] DURVILLE D. Approach of the constitutive material behaviour of textile composites through simulation[C]. International Conference on Textile Composites and Inflatable Structures, 2005, 307-316.
    [4] IWATA A, INOUE T, NAOUAR N, et al. Coupled meso-macro simulation of woven fabric local deformation during draping[J]. Composites Part A: Applied Science and Manufacturing,2019,118:267-280. doi: 10.1016/j.compositesa.2019.01.004
    [5] PENG X Q, CAO J. A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics[J]. Composites Part A: Applied Science and Manufacturing,2005,36(6):859-874. doi: 10.1016/j.compositesa.2004.08.008
    [6] 丁纺纺, 彭雄奇. 复合材料用机织物非正交本构模型的半球形冲压成型验证[J]. 复合材料学报, 2011, 28(1):156-160.

    DING F F, PENG X Q. Validation of a non-orthogonal constitutive model for woven composite fabrics via hemispherical stamping simulation[J]. Acta Materiae Compositae Sinica,2011,28(1):156-160(in Chinese).
    [7] PENG X, DING F F. Validation of a non-orthogonal constitutive model for woven composite fabrics via hemispherical stamping simulation[J]. Composites Part A: Applied Science and Manufacturing,2011,42(4):400-407. doi: 10.1016/j.compositesa.2010.12.014
    [8] BOISSE P, AKKERMAN R, CAO J J, et al. Finite element analysis of composite forming[M]. Sawston: Woodhead Publishing, 2007: 46-79.
    [9] KHAN M A, MABROUKI T, VIDAL-SALLE E, et al. Numerical and experimental analyses of woven composite reinforcement forming using a hypoelastic behaviour. Application to the double dome benchmark[J]. Journal of Materials Processing Technology,2010,210(2):378-388. doi: 10.1016/j.jmatprotec.2009.09.027
    [10] PENG X Q, GUO Z Y, DU T L, et al. A simple anisotropic hyperelastic constitutive model for textile fabrics with application to forming simulation[J]. Composites Part B: Engineering,2013,52:275-281. doi: 10.1016/j.compositesb.2013.04.014
    [11] YAO Y, HUANG X, PENG X Q, et al. An anisotropic hyperelastic constitutive model for plain weave fabric considering biaxial tension coupling[J]. Textile Research Journal,2019,89(3):434-444. doi: 10.1177/0040517517748495
    [12] YAO Y, PENG X Q, GONG Y K. Influence of tension-shear coupling on draping of plain weave fabrics[J]. Journal of Materials Science,2019,54:6310-6322. doi: 10.1007/s10853-019-03334-w
    [13] KHAN M A, SALEEM W, ASAD M, et al. A parametric sensitivity study on preforming simulations of woven compo-sites using a hypoelastic computational model[J]. Journal of Reinforced Plastics and Composites,2015,35(3):243-257.
    [14] HARRISON P, ABDIWI F, GUO Z, et al. Characterising the shear-tension coupling and wrinkling behaviour of woven engineering fabrics[J]. Composites Part A: Applied Science and Manufacturing,2012,43(6):903-914. doi: 10.1016/j.compositesa.2012.01.024
    [15] BOISSE P, HAMILA N, VIDAL-SALLE E, et al. Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses[J]. Composites Science and Technology,2011,71(5):683-692. doi: 10.1016/j.compscitech.2011.01.011
    [16] DE BILBAO E, SOULAT D, HIVET G, et al. Experimental study of bending behaviour of reinforcements[J]. Experimental Mechanics,2009,50(3):333-351.
    [17] BOISSE P, COLMARS J, HAMILA N, et al. Bending and wrinkling of composite fiber preforms and prepregs. A review and new developments in the draping simulations[J]. Composites Part B: Engineering,2018,141:234-249. doi: 10.1016/j.compositesb.2017.12.061
    [18] LIANG B, BOISSE P. A review of numerical analyses and experimental characterization methods for forming of textile reinforcements[J]. Chinese Journal of Aeronautics,2020,34:143-163.
    [19] DÖBRICH O, GEREKE T, DIESTEL O, et al. Decoupling the bending behavior and the membrane properties of finite shell elements for a correct description of the mechanical behavior of textiles with a laminate formulation[J]. Jour-nal of Industrial Textiles,2014,44(1):70-84. doi: 10.1177/1528083713477442
    [20] NISHII M, HIRASHIMA T, KURASHIKI T. Dry fabric forming analysis considering the influence of tensions on in-plane shear behavior[J]. Journal of the Society of Materials Science, Japan,2014,63(5):380-385. doi: 10.2472/jsms.63.380
    [21] LABANIEH A R, GARNIER C, OUAGNE P, et al. Intra-ply yarn sliding defect in hemisphere preforming of a woven preform[J]. Composites Part A: Applied Science and Manufacturing,2018,107:432-446. doi: 10.1016/j.compositesa.2018.01.018
    [22] GUZMAN-MALDONADO E, WANG P, HAMILA N, et al. Experimental and numerical analysis of wrinkling during forming of multi-layered textile composites[J]. Composite Structures,2019,208:213-223. doi: 10.1016/j.compstruct.2018.10.018
    [23] PENG X Q, CAO J, CHEN J, et al. Experimental and numerical analysis on normalization of picture frame tests for composite materials[J]. Composites Science and Technology,2004,64(1):11-21. doi: 10.1016/S0266-3538(03)00202-1
    [24] CAO J, AKKERMAN R, BOISSE P, et al. Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results[J]. Composites Part A: Applied Science and Manufacturing,2008,39(6):1037-1053. doi: 10.1016/j.compositesa.2008.02.016
    [25] 纺织工业标准化研究所. 纺织品 织物弯曲长度的测定: GB/T 18318—2001[S]. 北京: 国家质量技术监督局, 2001.

    Standardization Institute of Textile Industry. Textiles-Determination of bending length of fabrics: GB/T 18318—2001[S]. Beijing: The State Bureau of Quality and Technical Supervision, 2001(in Chinese).
    [26] PENG X Q, REHMAN Z U. Textile composite double dome stamping simulation using a non-orthogonal constitutive model[J]. Composites Science and Technology,2011,71(8):1075-1081. doi: 10.1016/j.compscitech.2011.03.010
    [27] KOMEILI M. Multi-scale characterization and modeling of shear-tension interaction in woven fabrics for composite forming and structural applications[D]. Vancouver: University of British Columbia, 2014.
  • 加载中
图(33) / 表(2)
计量
  • 文章访问数:  1070
  • HTML全文浏览量:  443
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-09
  • 修回日期:  2021-05-12
  • 录用日期:  2021-05-19
  • 网络出版日期:  2021-05-26
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回