留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

芳纶纤维增韧碳纤维增强环氧树脂复合材料-铝蜂窝夹芯结构界面性能和增韧机制

刘浩洋 吕超雨 石姗姗 孙直

刘浩洋, 吕超雨, 石姗姗, 等. 芳纶纤维增韧碳纤维增强环氧树脂复合材料-铝蜂窝夹芯结构界面性能和增韧机制[J]. 复合材料学报, 2022, 39(2): 559-567. doi: 10.13801/j.cnki.fhclxb.20210526.002
引用本文: 刘浩洋, 吕超雨, 石姗姗, 等. 芳纶纤维增韧碳纤维增强环氧树脂复合材料-铝蜂窝夹芯结构界面性能和增韧机制[J]. 复合材料学报, 2022, 39(2): 559-567. doi: 10.13801/j.cnki.fhclxb.20210526.002
LIU Haoyang, LV Chaoyu, SHI Shanshan, et al. Interfacial toughening and toughening mechanism of aramid staple fiber to carbon fiber reinforced epoxy resin composite-aluminum honeycomb sandwich structure[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 559-567. doi: 10.13801/j.cnki.fhclxb.20210526.002
Citation: LIU Haoyang, LV Chaoyu, SHI Shanshan, et al. Interfacial toughening and toughening mechanism of aramid staple fiber to carbon fiber reinforced epoxy resin composite-aluminum honeycomb sandwich structure[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 559-567. doi: 10.13801/j.cnki.fhclxb.20210526.002

芳纶纤维增韧碳纤维增强环氧树脂复合材料-铝蜂窝夹芯结构界面性能和增韧机制

doi: 10.13801/j.cnki.fhclxb.20210526.002
基金项目: 国家自然科学基金面上项目(11872138);国家自然科学基金青年基金项目(11702048);辽宁省教育厅科学研究经费项目(JDL2020021);大连市青年科技之星项目支持计划(2019RQ045;2019RQ069)
详细信息
    通讯作者:

    孙直,博士,副教授,博士生导师/硕士生导师,研究方向为复合材料结构力学、仿生优化设计等  E-mail: zhisun@dlut.edu.cn

  • 中图分类号: TB333

Interfacial toughening and toughening mechanism of aramid staple fiber to carbon fiber reinforced epoxy resin composite-aluminum honeycomb sandwich structure

  • 摘要: 研究了低密度芳纶短纤维(AF)对碳纤维增强环氧树脂复合材料(CF/EP)-铝蜂窝夹芯结构的界面增韧效果和增韧机制。制备了复合材料夹芯梁,将6 mm长度的AF制成絮状纤维薄层用于夹芯梁界面层的增韧,并采用非对称双悬臂梁实验对增韧和未增韧夹芯梁进行了界面断裂韧性的测量。相比于未增韧夹芯梁试件,增韧试件的平均临界能量释放率提高了91%,平均临界载荷提高了55%,而引入AF增韧层仅使夹芯梁质量提升了0.36%,显示本文方法具有良好的增韧效果与效率。使用SEM观察了夹芯梁界面的断面形貌与特征,微观观测结果显示,在界面裂纹扩展的过程中,AF一方面在面板与芯体之间形成桥联微结构,通过纤维拔出、纤维剥离、纤维断裂等行为,提高界面裂纹扩展的耗散能与临界载荷。另一方面,在蜂窝壁板周围的树脂“圆角”富余区,AF还能提高树脂与蜂窝壁板的粘结性能,避免蜂窝壁板因与面板接触面积过小而发生拔出。本文定量地测量了AF对CF/EP-铝蜂窝界面的宏观增韧效果,并阐释了其微观增韧机制,相关发现可为提高复合材料夹芯结构的安全性和可靠性提供指导。

     

  • 图  1  凯夫拉短纤维处理前后对比图

    Figure  1.  Comparison of Kevlar staple fibers before and after treatment

    图  2  碳纤维-芳纶纤维增强环氧树脂复合材料(CF-AF/EP) -铝蜂窝夹芯结构示意图

    Figure  2.  Schematic diagram of carbon fiber-aramid staple fiber/epoxy resin composite (CF-AF/EP)-aluminum honeycomb sandwich structure

    图  3  非对称双悬臂梁(ADCB)实验夹具及样品示意图

    Figure  3.  Schematic diagram of asymmetric double cantilever beam (ADCB) experiment fixture and sample

    L—Length of sandwich beam specimen; R—Radius; b—Width of sandwich beam specimen

    图  4  ADCB实验的实际加载过程

    Figure  4.  Actual loading process of ADCB experiment

    图  5  CF-AF/EP-铝蜂窝夹芯试件ADCB测试的典型荷载-位移曲线

    Figure  5.  Typical load-displacement curve for ADCB test of CF-AF/EP-aluminum honeycomb sandwich specimen

    图  6  AF增韧与未增韧CF/EP-铝蜂窝夹芯结构试件临界能量释放率对比

    Figure  6.  Comparison of critical energy release rate of AF toughened and un-toughened CF/EP-aluminum honeycomb sandwich structure specimens

    图  7  AF增韧与未增韧CF/EP-铝蜂窝夹芯结构试件临界载荷对比

    Figure  7.  Comparison of critical load of AF toughened and un-toughened CF/EP-aluminum honeycomb sandwich structure specimens

    图  8  AF增韧与未增韧CF/EP-铝蜂窝夹芯结构试件裂纹扩展过程中的能量释放率对比

    Figure  8.  Comparison of energy release rate during the crack propagation process of AF toughened and un-toughened CF/EP-aluminum honeycomb sandwich structure specimens

    图  9  CF-AF/EP-铝蜂窝夹芯试件芯体断裂面的特征:(a) 铝蜂窝芯体断裂面的整体形貌特征;(b) AF断裂与末端开裂

    Figure  9.  Characteristics of the fracture surface of CF-AF/EP-aluminum honeycomb sandwich specimen: (a) Overall morphology of the fracture surface of the aluminum honeycomb core; (b) AF fracture and end cracking

    图  10  CF/EP面板侧蜂窝壁板粘结强度对比:(a) 未增韧试件的蜂窝壁板均被拔出;(b) 芳纶增韧试件存在蜂窝壁板未被拔出

    Figure  10.  Comparison of CF/EP panel side honeycomb panel bonding strength: (a) Honeycomb panels of the un-toughened specimens are all pulled-out; (b) Aramid toughened specimens have honeycomb panels that are not pulled-out

    图  11  AF增韧机制示意图

    Figure  11.  Schematic diagram of the toughening mechanism of AF

  • [1] HA Ngocsan, LU Guoxing. A review of recent research on bio-inspired structures and materials for energy absorption applications[J]. Composites Part B: Engineering,2020,181(15):1-38.
    [2] XU S Q, BEYNON J H, RUAN D, et al. Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs[J]. Composite Structures,2012,94(8):2326-2336. doi: 10.1016/j.compstruct.2012.02.024
    [3] ZHANG Qiancheng, YANG Xiaohu, LI Peng, et al. Bioinspired engineering of honeycomb structure-Using nature to inspire human innovation[J]. Progress in Materials Science,2015,74:322-400.
    [4] WANG Jianfeng, GAO Haibo, DING Liang, et al. Enhancement of tensile strength of embedded parts in carbon fiber-reinforced plastic/aluminum honeycomb sandwich structures for vehicle[J]. Composite Structures,2016,152(15):800-806.
    [5] ZHANG Yanqin, ZONG Zhijian, LIU Qiang, et al. Static and dynamic crushing responses of CFRP sandwich panels filled with different reinforced materials[J]. Materials& Design,2017,117(5):396-408.
    [6] WU Yinghan, LIU Qiang, FU Jie, et al. Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels[J]. Composites Part B: Engineering,2017,121(15):122-133.
    [7] SUN Guangyong, HUO Xintao, CHEN Dongdong, et al. Experimental and numerical study on honeycomb sandwich panels under bending and in-panel compression[J]. Materials & Design,2017,133(5):154-168.
    [8] ZHU Shengqing, CHAI Ginboay. Damage and failure mode maps of composite sandwich panel subjected to quasi-static indentation and low velocity impact[J]. Composite Structures,2013,101:204-214. doi: 10.1016/j.compstruct.2013.02.010
    [9] 樊建中, 姚忠凯, 杜善义, 等. SiC颗粒增强金属基复合材料弹性模量与界面结合状况关系研究[J]. 复合材料学报, 1998, 15(2):1-5.

    FAN Jianzhong, YAO Zhongkai, DU Shanyi, et al. Research on relationship between elastic modules and interfacial bonding in SiC article reinforced metal matrix compo-sites[J]. Acta Materiae Compositae Sinica,1998,15(2):1-5(in Chinese).
    [10] QI Guocheng, DU Shanyi, ZHANG Boming, et al. Evaluation of carbon fiber/epoxy interfacial strength in transverse fiber bundle composite: Experiment and multiscale failure modeling[J]. Composites Science and Technology,2014,105(10):1-8.
    [11] TOMASHEVSKII V T, SITNIKOV S Y, SHALYGIN V N, et al. A method of calculating technological regimes of transversal reinforcement of composites with short-fiber microparticles[J]. Mechanics of Composite Materials,1989,25:400-406. doi: 10.1007/BF00614810
    [12] LASCOUP B, ABOURA Z, KHELLIL K, et al. Core-skin interfacial toughness of stitched sandwich structure[J]. Composites Part B: Engineering,2014,67:363-370. doi: 10.1016/j.compositesb.2014.07.006
    [13] YANG Feiyu, ZHANG Xinghong, HAN Jiecai, et al. Characterization of hot-pressed short carbon fiber reinforced ZrB2-SiC ultra-high temperature ceramic composites[J]. Journal of Alloys and Compounds,2009,472(1-2):395-399. doi: 10.1016/j.jallcom.2008.04.092
    [14] YANG Feiyu, ZHANG Xinghong, HAN Jiecai, et al. Mechanical properties of short carbon fiber reinforced ZrB2-SiC ceramic matrix composites[J]. Materials Letters,2008,62(17-18):2925-2927. doi: 10.1016/j.matlet.2008.01.076
    [15] WANG Chao, LI Yibin, TONG Liyong, et al. The role of grafting force and surface wettability in interfacial enhancement of carbon nanotube/carbon fiber hierarchical composites[J]. Carbon,2014,69:239-246. doi: 10.1016/j.carbon.2013.12.020
    [16] LI Yan, CHEN Chaozhong, XU Jie, et al. Improved mechanical properties of carbon nanotubes-coated flax fiber reinforced composites[J]. Journal of Materials Science,2015,50:1117-1128. doi: 10.1007/s10853-014-8668-3
    [17] LI Yan, CAI Shenming, HUANG Xiaolei. Multi-scaled enhancement of damping property for carbon fiber reinforced composites[J]. Composites Science and Technology,2017,143(3):89-97.
    [18] LI Yan, LI Qian, MA Hao. The voids formation mechanisms and their effects on the mechanical properties of flax fiber reinforced epoxy composites[J]. Composites Part A: Applied Science and Manufacturing,2015,72:40-48.
    [19] ZHANG Yongli, LI Yan, MA Hao, et al. Tensile and interfacial properties of unidirectional flax/glass fiber reinforced hybrid composites[J]. Composites Science and Technology,2013,88(14):172-177.
    [20] YASAEE M, BOND I P, TRASK R S, et al. Mode I interfacial toughening through discontinuous interleaves for damage suppression and control[J]. Composites Part A: Applied Science and Manufacturing,2012,43(1):198-207. doi: 10.1016/j.compositesa.2011.10.009
    [21] YASAEE M, BOND I P, TRASK R S, et al. Mode II interfacial toughening through discontinuous interleaves for damage suppression and control[J]. Composites Part A: Applied Science and Manufacturing,2012,43(1):121-128. doi: 10.1016/j.compositesa.2011.09.026
    [22] WALKER L, HU X Z. Comparison of carbon fiber/epoxy composites reinforced by short aramid and carbon fibers[J]. Scripta Materialia,1999,41(6):575-582. doi: 10.1016/S1359-6462(99)00193-1
    [23] YUAN B Y, WEE E P, CHEONG J L K, et al. Quasi-Z-directional toughening from un-bonded non-woven veil at interface in laminar composites[J]. Composites Communications,2017,6:20-24. doi: 10.1016/j.coco.2017.07.007
    [24] WONG D W Y, ZHANG H, BILOTTI E, et al. Interlaminar toughening of woven fabric carbon/epoxy composite laminates using hybrid aramid/phenoxy interleaves[J]. Composites Part A: Applied Science and Manufacturing,2017,101:151-159. doi: 10.1016/j.compositesa.2017.06.001
    [25] YUAN Bingyan, YE Mingxin, HU Yunsen, et al. Flexure and flexure-after-impact properties of carbon fibre composites interleaved with ultra-thin non-woven aramid fibre veils[J]. Composites Part A: Applied Science and Manufacturing,2020,131:1-10.
    [26] HU Yuan, LIU Weiwei, SHI Yaoyao. Low-velocity impact damage research on CFRPs with Kevlar-fiber toughening[J]. Composite Structure,2019,216:127-141. doi: 10.1016/j.compstruct.2019.02.051
    [27] WANG Binhua, BAI Yuxuan, HU Xiaozhi, et al. Enhanced epoxy adhesion between steel plates by surface treatment and CNT/short-fibre reinforcement[J]. Composites Science and Technology,2016,127:149-157. doi: 10.1016/j.compscitech.2016.03.008
    [28] SUN Zhi, HU Xiaozhi, SUN Shiyong, et al. Energy-absorption enhancement in carbon-fiber aluminum-foam sandwich structures from short aramid-fiber interfacial reinforcement[J]. Composites Science and Technology,2013,77(22):14-21.
    [29] SUN Zhi, HU Xiaozhi, CHEN Haoran. Effects of aramid-fibre toughening on interfacial fracture toughness of epoxy adhesive joint between carbon-fibre face sheet and aluminium substrate[J]. International Journal of Adhesion and Adhesives,2014,48(1):288-294.
    [30] SHI Shanshan, SUN Zhi, HU Xiaozhi, et al. Carbon-fiber and aluminum-honeycomb sandwich composites with and without Kevlar-fiber interfacial toughening[J]. Compo-sites Part A: Applied Science and Manufacturing,2014,67:102-110. doi: 10.1016/j.compositesa.2014.08.017
    [31] SUN Z, JEYARAMAN J, SUN S Y, et al. Carbon-fiber aluminum-foam sandwich with short aramid-fiber interfacial toughening[J]. Composites Part A: Applied Science and Manufacturing,2012,43(11):2059-2064. doi: 10.1016/j.compositesa.2012.06.002
    [32] SUN Zhi, SHI Shanshan, HU Xiaozhi, et al. Short-aramid-fiber toughening of epoxy adhesive joint between carbon fiber composites and metal substrates with different surface morphology[J]. Composites Part B: Engineering,2015,77:38-45. doi: 10.1016/j.compositesb.2015.03.010
    [33] SUN Z, JEYARAMAN J, SHI S S, et al. Processing and property of carbon-fiber aluminum-foam sandwich with aramid-fiber composite adhesive joints[J]. Journal of Adhesion Science and Technology,2014,28(18):1835-1845. doi: 10.1080/01694243.2014.925385
    [34] 石姗姗, 陈秉智, 陈浩然, 等. Kevlar短纤维增韧碳纤维/铝蜂窝夹芯板三点弯曲与面内压缩性能[J]. 复合材料学报, 2017, 34(9):1953-1959.

    SHI Shanshan, CHEN Bingzhi, CHEN Haoran, et al. Three-point bending and in-plane compression properties of carbon-fiber/aluminum-honeycomb sandwich panels with short-Kevlar-fiber toughening[J]. Acta Materiae Compo-sitae Sinica,2017,34(9):1953-1959(in Chinese).
    [35] ASTM. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D5528—01[S]. West Conhohocken: ASTM, 2007.
  • 加载中
图(11)
计量
  • 文章访问数:  1637
  • HTML全文浏览量:  654
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-09
  • 修回日期:  2021-05-05
  • 录用日期:  2021-05-19
  • 网络出版日期:  2021-05-26
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回