留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吸湿对单向亚麻纤维复合材料力学性能的影响

贾云龙 FIEDLERBodo

贾云龙, FIEDLER Bodo. 吸湿对单向亚麻纤维复合材料力学性能的影响[J]. 复合材料学报, 2022, 39(2): 608-616. doi: 10.13801/j.cnki.fhclxb.20210526.001
引用本文: 贾云龙, FIEDLER Bodo. 吸湿对单向亚麻纤维复合材料力学性能的影响[J]. 复合材料学报, 2022, 39(2): 608-616. doi: 10.13801/j.cnki.fhclxb.20210526.001
JIA Yunlong, FIEDLER Bodo. Influence of moisture absorption on the mechanical properties of unidirectional flax fibre composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 608-616. doi: 10.13801/j.cnki.fhclxb.20210526.001
Citation: JIA Yunlong, FIEDLER Bodo. Influence of moisture absorption on the mechanical properties of unidirectional flax fibre composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 608-616. doi: 10.13801/j.cnki.fhclxb.20210526.001

吸湿对单向亚麻纤维复合材料力学性能的影响

doi: 10.13801/j.cnki.fhclxb.20210526.001
基金项目: 常州工学院高层次人才科研启动项目 (YN20075);国家建设高水平大学公派研究生项目 (留金发[2015]3022)
详细信息
    通讯作者:

    贾云龙,博士研究生,讲师,研究方向为纤维增强复合材料、植物纤维表面改性 E-mail:jiayl@czu.cn

  • 中图分类号: TB332

Influence of moisture absorption on the mechanical properties of unidirectional flax fibre composites

  • 摘要: 为探明亚麻纤维增强树脂复合材料(FFRPs)在长期潮湿环境中的力学性能变化规律,基于真空辅助树脂模塑传递成型(VARTM)手段制备了的干燥状态的单向FFRPs(纤维体积分数为40vol%)。试验研究了 FFRPs在30°C、80%相对湿度(RH)环境中放置5天、35天、86天后拉伸力学性能变化。结果表明,FFRPs在湿热环境中吸水量近似符合一维情况下的Fickian第二定律,饱和吸水量为5.3%左右。FFRPs在垂直于纤维方向上的拉伸强度和模量随吸湿度增加递减,断口微观分析表明吸湿降低了纤维基体界面结合性能。然而,FFRPs在纤维方向上的拉伸强度并未因吸湿降低,反而在吸湿过程呈现出先减小后增加的趋势,此变化规律文献中尚未报道:相比干燥状态,放置5天后拉伸强度下降5.7%;放置35天后拉伸强度增加18.7%;放置86天时样品已处在饱和吸湿状态,拉伸强度略微减小,但仍比干燥状态增加13.7%。FFRPs在纤维取向上拉伸强度变化可解释为多因素共同作用的结果。

     

  • 图  1  单向亚麻纤维织物(左)和亚麻纱线结构(右)

    Figure  1.  Unidirectional (UD) flax fiber fabric (left) and structure of flax yarn (right)

    图  2  获取不同含水量亚麻纤维纱线的方法

    Figure  2.  Method to obtain flax yarns with different water contents

    F—Tensile force

    图  3  纤维预干燥及真空辅助树脂传递模塑成型(VARTM)过程中的温度和压力周期

    Figure  3.  Temperature and pressure cycle in fiber pre-drying and vacuum assisted resin transfer moulding (VARTM) process

    图  4  亚麻纤维增强树脂复合材料(FFRPs)吸湿实验数据及Fickian拟合吸湿曲线

    Figure  4.  Experimental and Fickian’law fitted weight uptake of flax fibre reinforced polymer composites (FFRPs) in humid

    RH—Relative humidity

    图  5  不同含水量亚麻纤维纱线的典型拉伸应力-应变曲线

    Figure  5.  Representative tensile stress-strain curves of flax yarns having different water contents

    图  6  [90°]FFRPs样品在不同吸湿时间下的典型拉伸应力-应变曲线

    Figure  6.  Representative tensile stress-strain curves of [90°] FFRPs specimens at different conditioning time

    σ—Tensile stress

    图  7  [90°] FFRPs样品在不同吸湿时间下的拉伸力学性能

    Figure  7.  Evolution of tensile properties of [90°] FFRPs specimens at different conditioning time

    图  8  [90°] FFRPs样品不同吸湿时间下(30℃、80%RH)的断裂面微观形貌

    Figure  8.  Fracture morphologies of [90°] FFRPs specimens conditioned in humid (30℃, 80%RH)

    图  9  [0°] FFRPs样品在不同吸湿时间下的拉伸力学性能

    Figure  9.  Evolution of tensile properties of [0°] FFRPs specimens at different conditioning time

    图  10  [0°] FFRPs样品在不同吸湿时间下的典型拉伸应力-应变曲线

    Figure  10.  Representative tensile stress-strain curves of [0°] FFRPs specimens at different conditioning time

    图  11  [0°] FFRPs样品在不同吸湿时间下的刚度变化

    Figure  11.  Stiffness evolution of [0°] FFRPs specimens at different conditioning time

    图  12  影响吸湿后[0°] FFRPs样品拉伸强度的因素趋势线

    Figure  12.  Trend lines that would influence on tensile strength of [0°] wet-conditioned FFRPs specimens

    图  13  干湿状态下[0°] FFRPs样品的断裂面形貌比较

    Figure  13.  Comparison of fracture morphologies of [0°] dry and wet-conditioned FFRPs specimens

    表  1  [0°]和[90°]FFRPs样品的计算Fickian扩散系数

    Table  1.   Calculated Fickian diffusion coefficients of [0°] and [90°] FFRPs

    $ {D}_{\mathrm{e}} $1/(10−7 mm2·s−1)$ {D}_{\mathrm{c}} $2/(10−7 mm2·s−1)$ {M}_{\mathrm{m}} $3/%
    [0°] 2.40 1.84 5.41
    [90°] 3.27 2.74 5.25
    Notes: $ {D}_{\mathrm{e}} $—Diffusion coefficient calculated from experimental data; $ {D}_{\mathrm{c}} $—Corrected diffusion coefficient; $ {M}_{\mathrm{m}} $—Absorption of water at saturation.
    下载: 导出CSV

    表  2  亚麻纤维纱线的拉伸性能 (n≥20)

    Table  2.   Tensile properties of tested flax yarns (n≥20)

    Water content/%Strength/MPaModulus1/GPaElongation at break/%
    ~0.5 486.0±74.9 22.0±2.9 2.5±0.2
    ~3.0 517.2±92.2 16.4±2.9 3.4±0.5
    ~5.5 544.1±81.2 14.4±1.9 4.1±0.4
    ~50.0 598.8±136.4 10.7±0.9 5.6±0.9
    Notes: Modulus1 was calculated as the gradient of the regression line between 100 MPa and 200 MPa; n—Sample size of each condition.
    下载: 导出CSV
  • [1] SHEKAR H S, RAMACHANDRA M. Green composites: A review[J]. Materials Today: Proceedings,2018,5(1):2518-2526. doi: 10.1016/j.matpr.2017.11.034
    [2] PICKERING K L, EFENDY M A, LE T M. A review of recent developments in natural fibre composites and their mechanical performance[J]. Composites Part A: Applied Science and Manufacturing,2016,83:98-112. doi: 10.1016/j.compositesa.2015.08.038
    [3] LIBO YAN, CHOUW N, JAYARAMAN K. Flax fibre and its composites–A review[J]. Composites Part B: Engineering,2014,56:296-317. doi: 10.1016/j.compositesb.2013.08.014
    [4] IBRAHIM M. Natural-fibre composites: An overview[EB/OL]. [2020-11-04]. http://www.kompozit.com/post/natural-fibre-composites-an-overview.
    [5] HALLAK PANZERA T, JEANNIN T, GABRION X, et al. Static, fatigue and impact behaviour of an autoclaved flax fibre reinforced composite for aerospace engineering[J]. Composites Part B: Engineering,2020,197:108049. doi: 10.1016/j.compositesb.2020.108049
    [6] MOKHOTHU T H, JOHN M J. Review on hygroscopic aging of cellulose fibres and their biocomposites[J]. Carbohydrate polymers,2015,131:337-354. doi: 10.1016/j.carbpol.2015.06.027
    [7] MOUDOOD A, RAHMAN A, CHSNER A, et al. Flax fiber and its composites: An overview of water and moisture absorption impact on their performance[J]. Journal of Rnforced Plastics and Composites,2018,38(7):1-17.
    [8] WANG A, XIAN G, LI H. Effects of fiber surface grafting with nano-clay on the hydrothermal ageing behaviors of flax fiber/epoxy composite plates[J]. Polymers,2019,11(8):1278-1289. doi: 10.3390/polym11081278
    [9] ASSARAR M, SCIDA D, EL MAHI A, et al. Influence of water ageing on mechanical properties and damage events of two reinforced composite materials: Flax-fibres and glass-fibres[J]. Materials & Design,2011,32(2):788-795.
    [10] SCIDA D, ASSARAR M, POILÂNE C, et al. Influence of hygrothermal ageing on the damage mechanisms of flax-fibre reinforced epoxy composite[J]. Composites Part B: Engineering,2013,48:51-58. doi: 10.1016/j.compositesb.2012.12.010
    [11] LE DUIGOU A, DAVIES P, BALEY C. Exploring durability of interfaces in flax fibre/epoxy micro-composites[J]. Composites Part A: Applied Science and Manufacturing,2013,48:121-128. doi: 10.1016/j.compositesa.2013.01.010
    [12] BERGES M, LÉGER R, PLACET V, et al. Influence of moisture uptake on the static, cyclic and dynamic behaviour of unidirectional flax fibre-reinforced epoxy laminates[J]. Composites Part A: Applied Science and Manufacturing,2016,88:165-177. doi: 10.1016/j.compositesa.2016.05.029
    [13] MUNOZ E, GARCÍA-MANRIQUE J A. Water absorption behaviour and its effect on the mechanical properties of flax fibre reinforced bioepoxy composites[J]. International Journal of Polymer Science,2015,6:1-10.
    [14] MOUDOOD A, HALL W, ÖCHSNER A, et al. Effect of moisture in flax fibres on the quality of their composites[J]. Journal of Natural Fibers,2019,16(2):209-224. doi: 10.1080/15440478.2017.1414651
    [15] GOUTIANOS S, PEIJS T, NYSTROM B, et al. Development of flax fibre based textile reinforcements for composite applications[J]. Applied Composite Materials,2006,13(4):199-215. doi: 10.1007/s10443-006-9010-2
    [16] ASTM. Standard test method for tensile properties of polymer matrix composite materials: D3039M—17[S]. West Conshohocken: ASTM International, 2017.
    [17] ASTM. Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials: D5229M—12[S]. West Conshohocken: ASTM International, 2012.
    [18] 边佳燕, 刘钧, 鲍铮. 聚合物基复合材料吸湿研究进展[J]. 材料导报, 2016, 30(28):340-344.

    BIAN Jiayan, LIU Jun, BAO Zheng. Research progress in moisture absorption of polymer matrix composites[J]. Materials Reports,2016,30(28):340-344(in Chinese).
    [19] SHEN C H, SPRINGER G S. Moisture absorption and desorption of composite materials[J]. Journal of Composite Materials,1976,10(1):2-20. doi: 10.1177/002199837601000101
    [20] MASSETEAU B, MICHAUD F, IRLE M, et al. An evaluation of the effects of moisture content on the modulus of elasticity of a unidirectional flax fiber composite[J]. Compo-sites Part A: Applied Science and Manufacturing,2014,60:32-37. doi: 10.1016/j.compositesa.2014.01.011
    [21] STAMBOULIS A, BAILLIE C A, PEIJS T. Effects of environmental conditions on mechanical and physical properties of flax fibers[J]. Composites Part A: Applied Science and Manufacturing,2001,32(8):1105-1115. doi: 10.1016/S1359-835X(01)00032-X
    [22] BALEY C, LE DUIGOU A, BOURMAUD A, et al. Influence of drying on the mechanical behaviour of flax fibres and their unidirectional composites[J]. Composites Part A: Applied Science and Manufacturing,2012,43(8):1226-1233. doi: 10.1016/j.compositesa.2012.03.005
    [23] DEBORAH D L. Carbon composites (Second edition)[M]. Netherlands: Elsevier, 2017: 88-160.
    [24] LEFEUVRE A, BOURMAUD A, MORVAN C, et al. Elementary flax fibre tensile properties: Correlation between stress-strain behaviour and fibre composition[J]. Industrial Crops and Products,2014,52:762-769. doi: 10.1016/j.indcrop.2013.11.043
    [25] LEFEUVRE A, LE DUIGOU A, BOURMAUD A, et al. Analysis of the role of the main constitutive polysaccharides in the flax fibre mechanical behaviour[J]. Industrial Crops and Products,2015,76:1039-1048. doi: 10.1016/j.indcrop.2015.07.062
    [26] BALEY C. Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase[J]. Composites Part A: Applied Science and Manufacturing,2002,33(7):939-948. doi: 10.1016/S1359-835X(02)00040-4
    [27] PUCCI M F, LIOTIER P J, SEVENO D, et al. Wetting and swelling property modifications of elementary flax fibres and their effects on the liquid composite molding process[J]. Composites Part A: Applied Science and Manufacturing,2017,97:31-40. doi: 10.1016/j.compositesa.2017.02.028
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  959
  • HTML全文浏览量:  653
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-22
  • 修回日期:  2021-04-23
  • 录用日期:  2021-05-18
  • 网络出版日期:  2021-05-26
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回