留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZIF-67/废棉纤维素复合气凝胶的制备及其对染料的去除性能

翟健玉 白文浩 李昂 崔策 郭荣辉

翟健玉, 白文浩, 李昂, 等. ZIF-67/废棉纤维素复合气凝胶的制备及其对染料的去除性能[J]. 复合材料学报, 2022, 39(3): 1259-1267. doi: 10.13801/j.cnki.fhclxb.20210521.001
引用本文: 翟健玉, 白文浩, 李昂, 等. ZIF-67/废棉纤维素复合气凝胶的制备及其对染料的去除性能[J]. 复合材料学报, 2022, 39(3): 1259-1267. doi: 10.13801/j.cnki.fhclxb.20210521.001
ZHAI Jianyu, BAI Wenhao, LI Ang, et al. Preparation of ZIF-67/waste cotton cellulose composite aerogels and the removal performance on dyes[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1259-1267. doi: 10.13801/j.cnki.fhclxb.20210521.001
Citation: ZHAI Jianyu, BAI Wenhao, LI Ang, et al. Preparation of ZIF-67/waste cotton cellulose composite aerogels and the removal performance on dyes[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1259-1267. doi: 10.13801/j.cnki.fhclxb.20210521.001

ZIF-67/废棉纤维素复合气凝胶的制备及其对染料的去除性能

doi: 10.13801/j.cnki.fhclxb.20210521.001
基金项目: 成都市科技局技术创新研发项目(2019-YF05-00892-SN)
详细信息
    通讯作者:

    郭荣辉,博士,教授,博士生导师,研究方向为功能柔性材料 E-mail:ronghuiguo214@126.com

  • 中图分类号: TQ427.26;X703

Preparation of ZIF-67/waste cotton cellulose composite aerogels and the removal performance on dyes

  • 摘要: 为高效去除污水中的有机染料,以废旧棉织物为纤维素原材料,碱/尿素为溶解体系,N, N'-亚甲基双丙烯酰胺(MBA)作为交联剂,通过冷冻干燥技术制备了废棉纤维素气凝胶(WCCA),在其表面原位生成钴基沸石咪唑酯有机框架(ZIF-67),制备了ZIF-67/WCCA,用于吸附孔雀石绿(MG)和催化过硫酸氢钾(PMS)降解亚甲基蓝(MB)。借助SEM和XRD对ZIF-67/WCCA的结构和成分进行表征,并探讨了影响其染料吸附和催化降解性能的条件。结果表明,具有菱形十二面体结构的ZIF-67负载于WCCA网络框架上;在室温下,对MG吸附量达到1474.01 mg·g−1;在100 s左右催化PMS对MB的降解率可达100%。ZIF-67/WCCA可应用于污水中染料吸附和催化降解。

     

  • 图  1  ZIF-67/废棉纤维素复合气凝胶(WCCA)的合成路线

    MBA—N,N’-Methylenediacrylamide

    Figure  1.  Route for the synthesis of ZIF-67/waste cotton cellulose composite aerogels (WCCA)

    图  2  WCCA实物照片 (a)、WCCA的SEM图像 ((b)~(d))、ZIF-67/WCCA实物照片 (e) 和ZIF-67/WCCA的SEM图像 ((f)~(i))

    Figure  2.  Digital photograph of WCCA (a), SEM images of WCCA ((b)-(d)), digital photograph of ZIF-67/WCCA (e) and SEM images of ZIF-67/WCCA ((f)-(i))

    图  3  WCCA和ZIF-67/WCCA的XRD图谱

    Figure  3.  XRD patterns of WCCA and ZIF-67/WCCA

    图  4  时间对WCCA和ZIF-67/WCCA吸附量的影响

    Figure  4.  Effect of time on adsorption capacity of WCCA and ZIF-67/WCCA

    图  5  ZIF-67/WCCA的动力学拟合曲线:(a) 准一级动力学模型;(b) 准二级动力学模型

    Figure  5.  Fitted adsorption kinetic plots of ZIF-67/WCCA: (a) Pseudo-first-order kinetic model; (b) Pseudo-second-order kinetic model

    qe—Adsorption capacity at adsorption equilibrium; qt—Adsorption capacity of aerogels to dyes after a certain adsorption time t

    图  6  ZIF-67/WCCA吸附MG的等温线

    Figure  6.  Adsorption isotherms plots for MG of ZIF-67/WCCA

    Ce—Concentration of adsorption equilibrium

    图  7  pH值对ZIF-67/WCCA吸附MG量的影响

    Figure  7.  Effect of pH value on adsorption capacity of MG on ZIF-67/WCCA

    图  8  WCCA及ZIF-67/WCCA对MB的去除效率的影响 (a) 和相对应的一阶动力学方程的拟合曲线 (b)

    Figure  8.  Effect of WCCA and ZIF-67/WCCA on MB removal efficiency (a) and fitting curves of the corresponding first-order kinetic equation (b)

    图  9  过硫酸氢钾(PMS)浓度 (a) 和pH (b) 对ZIF-67/WCCA去除MB效率的影响

    Figure  9.  Effects of potassium bisulfate (PMS) concentration (a) and pH (b) on MB removal efficiency of ZIF-67/WCCA

    图  10  (a) 自由基清除剂对MB降解速率的影响;(b) MB降解的三次循环实验

    Figure  10.  (a) Effect of radical scavengers on MB degradation;(b) Degradation of MB within the successive three cycles

    图  11  ZIF-67/WCCA活化PMS产生自由基的机制图

    MB—Methylene blue; PMS—Peroxymonosulfate

    Figure  11.  Mechanism of PMS to generate free radicals on ZIF-67/WCCA

    表  1  ZIF-67/WCCA吸附亚甲基蓝(MG)的动力学参数

    Table  1.   Adsorption kinetic parameters of methylene blue (MG) on ZIF-67/WCCA

    Pseudo-first-orderPseudo-second-order
    k1/min−1 R12 k2/(min·g·mg−1) R22
    0.0229 0.983 0.0000678 0.991
    Notes: k1—Pseudo-first-order adsorption rate constants; R12
    Correlation coefficient of pseudo-first-order kinetics model; k2—Pseudo-second-order adsorption rate constants; R22
    Correlation coefficient of pseudo-second-order kinetics model.
    下载: 导出CSV

    表  2  ZIF-67/WCCA吸附MG的等温线模型参数

    Table  2.   Parameters of adsorption isotherms model for MG on ZIF-67/WCCA

    Langumir Freundlich
    Ce/qe=1/qmKL+Ce/qm lnqe=(1/n)lnCe+lnKF
    qe exp/(mg·g−1) qm/(mg·g−1) KL RL2 KF RF2
    1474.01 1498.35 3.209 0.999 492.8 0.876
    Notes: qe exp—Equilibrium adsorption capacities of the dyes; qm exp—Maximum adsorption capacities of the dyes; KL—Langmuir equilibrium adsorption constants; KF—Freundlich equilibrium adsorption constants; RL2—Correlation coefficient of Langumir model; RF2—Correlation coefficient of Freundlich model.
    下载: 导出CSV
  • [1] MATE C J, MISHRA S. Synthesis of borax cross-linked Jhingan gum hydrogel for remediation of Remazol Brilliant Blue R (RBBR) dye from water: Adsorption isotherm, kinetic, thermodynamic and biodegradation studies[J]. International Journal of Biological Macromolecules,2020,151:677-690. doi: 10.1016/j.ijbiomac.2020.02.192
    [2] DAI C Y, ZHANG M H, GUO X W, et al. Mesoporous composite Ni-C-N/SA for selective adsorption of methylene blue from water[J]. Chemical Engineering Journal,2021,407:127181. doi: 10.1016/j.cej.2020.127181
    [3] 李婷婷, 李瑞雪, 马政, 等. 纤维素-海藻酸钠-海泡石多孔微球的制备及其对亚甲基蓝吸附性能[J]. 复合材料学报, 2021, 38(12): 4273-4281.

    LI Tingting, LI Ruixue, MA Zheng, et al. Preparation of cellulose-sodium alginate-sepiolite porous bead and its application in adsorption of methylene blue[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4273-4281(in Chinese).
    [4] YU C Q, WEN M, LI S H, et al. Elbaite catalyze peroxymonosulfate for advanced oxidation of organic pollutants: Hydroxyl groups induced generation of reactive oxygen species[J]. Journal of Hazardous Materials,2020,398:122932. doi: 10.1016/j.jhazmat.2020.122932
    [5] PANG Y, KONG L, CHEN D, et al. Facilely synthesized cobalt doped hydroxyapatite as hydroxyl promoted peroxymonosulfate activator for degradation of Rhodamine B[J]. Journal of Hazardous Materials,2020,384:121447. doi: 10.1016/j.jhazmat.2019.121447
    [6] XIAO Z Y, LI Y, FAN L, et al. Degradation of organic dyes by peroxymonosulfate activated with water-stable iron-based metal organic frameworks[J]. Journal of Colloid and Interface Science,2021,589:298-307. doi: 10.1016/j.jcis.2020.12.123
    [7] GHORAI K, PANDA A, BHATTACHARJEE M, et al. Facile synthesis of CuCr2O4/CeO2 nanocomposite: A new Fenton like catalyst with domestic LED light assisted improved photocatalytic activity for the degradation of RhB, MB and MO dyes[J]. Applied Surface Science,2021,536:147604. doi: 10.1016/j.apsusc.2020.147604
    [8] DU Z F, CUI C, ZHANG S H, et al. Visible-light-driven photocatalytic degradation of Rhodamine B using Bi2WO6/GO deposited on polyethylene terephthalate fabric[J]. Journal of Leather Science and Engineering,2020,2(1):16. doi: 10.1186/s42825-020-00029-w
    [9] LI X, WAN J Q, MAY W, et al. Study on cobalt-phosphate (Co-Pi) modified BiVO4/Cu2O photoanode to significantly inhibit photochemical corrosion and improve the photoelectrochemical performance[J]. Chemical Engineering Journal,2021,404:127054. doi: 10.1016/j.cej.2020.127054
    [10] HE X H, CHEN T T, JIANG T Y, et al. Preparation and adsorption properties of magnetic hydrophobic cellulose aerogels based on refined fibers[J]. Carbohydrate Polymers,2021,260:117790. doi: 10.1016/j.carbpol.2021.117790
    [11] SONG Y S, PENG Y S, LONG N V, et al. Multifunctional self-assembly 3D Ag/g-C3N4/RGO aerogel as highly efficient adsorbent and photocatalyst for R6G removal from wastewater[J]. Applied Surface Science,2021,542:148584. doi: 10.1016/j.apsusc.2020.148584
    [12] MAHMOODI N M, MOKHTARI-SHOURIJEH Z, LANGARI S, et al. Seifpanahi-Shabani, silica aerogel/polyacrylonitrile/polyvinylidene fluoride nanofiber and its ability for treatment of colored wastewater[J]. Journal of Molecular Structure,2021,1227:129418. doi: 10.1016/j.molstruc.2020.129418
    [13] YANG L, ZHAN Y F, GONG Y J, et al. Development of eco-friendly CO2-responsive cellulose nanofibril aerogels as “green” adsorbents for anionic dyes removal[J]. Journal of Hazardous Materials,2021,405:124194. doi: 10.1016/j.jhazmat.2020.124194
    [14] QIN Q, GUO R H, REN E H, et al. Waste cotton fabric/zinc borate composite aerogel with excellent flame retardancy[J]. ACS Sustainable Chemistry & Engineering,2020,8:10335-10344.
    [15] QIN Q, GUO R H, REN E H, et al. Waste cotton fiber/Bi2WO6 composite film for dye removal[J]. Cellulose,2019,26:3909-3922. doi: 10.1007/s10570-019-02345-9
    [16] ÜTEBAY B, ÇELIK P, ÇAY A. Effects of cotton textile waste properties on recycled fibre quality[J]. Journal of Cleaner Production,2019,222:29-35. doi: 10.1016/j.jclepro.2019.03.033
    [17] ERKARTAL M, ERKILIC U, TAM B, et al. From 2-methylimidazole to 1, 2, 3-triazole: A topological transformation of ZIF-8 and ZIF-67 by post-synthetic modification[J]. Chemical Communications (Camb),2017,53:2028-2031. doi: 10.1039/C6CC08746A
    [18] LI N, CHEN G Y, ZHAO J H, et al. Self-cleaning PDA/ZIF-67@PP membrane for dye wastewater remediation with peroxymonosulfate and visible light activation[J] Journal of Membrane Science, 2019, 591: 117341.
    [19] 刘兴静, 孙赟, 林亚玲等. 天然纤维表面化学处理性能研究[J]. 化工新型材料, 2012, 40(5):51-53. doi: 10.3969/j.issn.1006-3536.2012.05.018

    LIU Xingjing, SUN Yun, LIN Yaling, et al. Properties of natural fibersurface after chemical treatment[J]. New chemical materials,2012,40(5):51-53(in Chinese). doi: 10.3969/j.issn.1006-3536.2012.05.018
    [20] SONG W Q, ZHU M, ZHU Y F, et al. Zeolitic imidazolate framework-67 functionalized cellulose hybrid aerogel: An environmentally friendly candidate for dye removal[J]. cellulose,2020,27:2161-2172. doi: 10.1007/s10570-019-02883-2
    [21] GUO W W, WANG X, ZHANG P, et al. Nano-fibrillated cellulose-hydroxyapatite based composite foams with excellent fire resistance[J]. Carbohydrate Polymers,2018,195:71-78. doi: 10.1016/j.carbpol.2018.04.063
    [22] LIN K Y, CHANG H A. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water[J] Chemosphere, 2015, 139: 624-631.
    [23] XIANG C, WANG C, GUO R H, et al. Synthesis of carboxymethyl cellulose-reduced graphene oxide aerogel for efficient removal of organic liquids and dyes[J]. Journal of Materials Science,2018,54:1872-1883.
    [24] WU Y H, REN W J, LI Y W, et al. Zeolitic Imidazolate Framework-67@Cellulose aerogel for rapid and efficient degradation of organic pollutants[J]. Journal of Solid State Chemistry,2020,291:121621. doi: 10.1016/j.jssc.2020.121621
    [25] WANG S Z, LIU H Y, WANG J L. Nitrogen, sulfur and oxygen co-doped carbon-armored Co/Co9S8 rods (Co/Co9S8@N—S—O—C) as efficient activator of peroxymonosulfate for sulfamethoxazole degradation[J]. Journal of Hazardous Materials,2020,387:121669. doi: 10.1016/j.jhazmat.2019.121669
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  1736
  • HTML全文浏览量:  636
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-22
  • 修回日期:  2021-04-29
  • 录用日期:  2021-05-11
  • 网络出版日期:  2021-05-24
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回