留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同预浸骨料-PVA纤维对再生混凝土力学性能的影响

王兴国 姜茂林 陈旭 王永贵 朱建平 程飞

王兴国, 姜茂林, 陈旭, 等. 不同预浸骨料-PVA纤维对再生混凝土力学性能的影响[J]. 复合材料学报, 2022, 39(3): 1205-1214. doi: 10.13801/j.cnki.fhclxb.20210520.005
引用本文: 王兴国, 姜茂林, 陈旭, 等. 不同预浸骨料-PVA纤维对再生混凝土力学性能的影响[J]. 复合材料学报, 2022, 39(3): 1205-1214. doi: 10.13801/j.cnki.fhclxb.20210520.005
WANG Xingguo, JIANG Maolin, CHEN Xu, et al. Effect of different pre-soaked aggregate-PVA fiber on the mechanical properties of recycled aggregate concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1205-1214. doi: 10.13801/j.cnki.fhclxb.20210520.005
Citation: WANG Xingguo, JIANG Maolin, CHEN Xu, et al. Effect of different pre-soaked aggregate-PVA fiber on the mechanical properties of recycled aggregate concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1205-1214. doi: 10.13801/j.cnki.fhclxb.20210520.005

不同预浸骨料-PVA纤维对再生混凝土力学性能的影响

doi: 10.13801/j.cnki.fhclxb.20210520.005
基金项目: NSFC-河南省联合基金(U1904188);河南省高校基本科研业务费(NSFRF200328)
详细信息
    通讯作者:

    王兴国,博士,教授,硕士生导师,研究方向为再生混凝土材料性能与结构应用  E-mail:paulw@hpu.edu.cn

  • 中图分类号: TU502.6

Effect of different pre-soaked aggregate-PVA fiber on the mechanical properties of recycled aggregate concrete

  • 摘要: 为研究纳米SiO2溶液和水泥净浆改性再生粗骨料后,掺入聚乙烯醇(Polyvinyl alcohol, PVA)纤维再生混凝土的基本力学性能和动态力学性能,分别对不同浓度的纳米SiO2溶液和不同水灰比的水泥净浆进行再生骨料浸泡预试验,选定浓度为2wt%的纳米SiO2溶液和水灰比为0.5的水泥净浆,对改性后再生混凝土的力学性能进行对比试验。选取再生粗骨料取代率、PVA纤维掺量和应变率为变量,静力学性能采用万能压力机进行,动态力学性能采用霍普金森压杆(Split Hopkinson pressure bar, SHPB)进行。测试试件28天立方体抗压强度、轴心抗压强度和抗折强度,得到了不同应变率条件下试件的应力-应变曲线,分析了试件静力性能、动态抗压强度、动态增长因子(Dynamic increase factor, DIF)、动态峰值应变和比吸能随变量的变化规律。结果表明:随取代率增加,试件基本力学性能降低,增加PVA纤维掺量,试件抗压强度降低而抗折强度提高;随取代率和PVA纤维掺量增加,试件动态峰值应力呈下降趋势,而动态峰值应变呈增长趋势;取代率的增加提升了试件的DIF值,而PVA纤维对DIF值影响并不明显;应变率的提高增强了试件的动态强度和应变,而水泥净浆改性再生混凝土比纳米SiO2改性再生混凝土具备更高的比吸能。

     

  • 图  1  不同聚乙烯醇(PVA)纤维/再生混凝土(RAC)制备流程

    Figure  1.  Preparation process of different polyvinyl alcohol (PVA) fiber/recycled aggregate concretes (RAC)

    图  2  PVA/RAC试件立方体抗压强度

    Figure  2.  Cube compressive strength of PVA/RAC specimens

    图  3  PVA/RAC试件轴心抗压强度

    Figure  3.  Axial compressive strength of PVA/RAC specimens

    图  4  PVA/RAC试件抗折强度

    Figure  4.  Flexural strength of PVA/RAC specimens

    图  5  各PVA/RAC试件的应力-应变曲线

    Figure  5.  Stress-strain curves of PVA/RAC specimens

    图  6  PVA/RAC动态抗压强度

    Figure  6.  Dynamic compressive strength of PVA/RAC specimens

    图  7  PVA/RAC动态增长因子(DIF)

    Figure  7.  Dynamic increase factor (DIF) of PVA/RAC specimens

    图  8  PVA/RAC动态峰值应变

    Figure  8.  Dynamic peak strain of PVA/RAC specimens

    图  9  PVA/RAC试件比吸能

    Figure  9.  Specific energy absorption of PVA/RAC specimens

    表  1  普通硅酸盐水泥各项指标

    Table  1.   Various indexes of ordinary Portland cement

    Ignition
    loss/%
    SO3/
    wt%
    MgO/
    wt%
    Specific surface
    area/(m2·kg−1)
    Initial setting
    time/min
    Final setting
    time/min
    28 days compressive
    strength/MPa
    28 days flexural
    strength/MPa
    2.41 2.45 2.11 403 180 265 51 8.5
    下载: 导出CSV

    表  2  不同预浸骨料物理指标

    Table  2.   Physical indicators of different pre-soaked aggregates

    Aggregate typeNARACRASRA
    Indexes contentControl groupWater-cement ratioPre-soaking time/hPre-concentration/wt%
    0.50.70.9244872123
    Apparent density/(kg·m−3) 2712 2564 2545 2556 2560 2586 2603 2608 2587 2602 2608
    Crush index/% 8.30 19.70 15.17 18.41 19.54 17.97 15.99 15.67 17.02 16.51 16.09
    Water absorption/% 0.38 4.80 5.50 5.30 5.00 4.22 3.92 3.81 4.33 3.86 3.75
    Notes: NA—Natural aggregate; RA—Recycled aggregate; CRA—Cement recycled aggregate; SRA—Silica recycled aggregate.
    下载: 导出CSV

    表  3  不同PVA纤维/RAC配合比

    Table  3.   Mixing proportion of different PVA fiber/RAC

    NumberNotationMaterial consumption/(kg·m−3)fcu/MPafc/MPaff/MPa
    NARASRACRAPVA
    fiber
    Additional
    water
    NP0 NAC 1060.80 0 0 0 0 0 41.30 33.90 5.1
    NP0.05 0.05vol%PVA/NAC 1060.80 0 0 0 0.65 0 38.75 33.29 5.8
    NP0.1 0.10vol%PVA/NAC 1060.80 0 0 0 1.30 0 39.95 31.70 6.1
    R30P0 RAC(30wt%RA) 742.56 318.24 0 0 0 12.22 35.66 27.56 4.7
    R30P0.05 0.05vol%PVA/RAC(30wt%RA) 742.56 318.24 0 0 0.65 12.22 33.07 25.58 5.4
    R30P0.1 0.10vol%PVA/RAC(30wt%RA) 742.56 318.42 0 0 1.30 12.22 34.39 26.17 5.3
    R100P0 RAC(100wt%RA) 0 1060.80 0 0 0 40.73 32.40 23.95 4.1
    R100P0.05 0.05vol%PVA/RAC(100wt%RA) 0 1060.80 0 0 0.65 40.73 31.30 23.13 4.4
    R100P0.1 0.10vol%PVA/RAC(100wt%RA) 0 1060.80 0 0 1.30 40.73 30.08 22.53 4.7
    SR30P0 SRAC(30wt%SRA) 742.56 0 318.24 0 0 11.64 38.60 30.10 4.8
    SR30P0.05 0.05vol%PVA/SRAC(30wt%SRA) 742.56 0 318.24 0 0.65 11.64 37.25 29.46 5.7
    SR30P0.1 0.10vol%PVA/SRAC(30wt%SRA) 742.56 0 318.24 0 1.30 11.64 35.97 27.94 5.5
    SR100P0 SRAC(100wt%SRA) 0 0 1060.80 0 0 38.08 36.43 27.32 3.9
    SR100P0.05 0.05vol%PVA/SRAC(100wt%SRA) 0 0 1060.80 0 0.65 38.08 33.53 25.54 4.1
    SR100P0.1 0.10vol%PVA/SRAC(100wt%SRA) 0 0 1060.80 0 1.30 38.08 34.70 26.13 4.9
    CR30P0 CRAC(30wt%CRA) 742.56 0 0 318.24 0 10.88 39.69 32.73 5.0
    CR30P0.05 0.05vol%PVA/CRAC(30wt%CRA) 742.56 0 0 318.24 0.65 10.88 37.97 31.07 5.6
    CR30P0.1 0.10vol%PVA/CRAC(30wt%CRA) 742.56 0 0 318.24 1.30 10.88 37.35 31.44 5.9
    CR100P0 CRAC(100wt%CRA) 0 0 0 1060.80 0 36.27 37.23 29.86 4.3
    CR100P0.05 0.05vol%PVA/CRAC(100wt%CRA) 0 0 0 1060.80 0.65 36.27 35.05 29.54 4.8
    CR100P0.1 0.10vol%PVA/CRAC(100wt%CRA) 0 0 0 1060.80 1.30 36.27 35.80 28.63 5.0
    Notes: NAC—Natural aggregate concrete; RAC—Recycled aggregate concrete; SRAC—Silica recycled aggregate concrete; CRAC—Cement recycled aggregate concrete; in ivol% and jwt%, i and j mean the PVA fiber content and aggregate replacement percentage; fcuCube compressive strength; fcAxial compressive strength; ff—Flexural strength.
    下载: 导出CSV

    表  4  PVA/RAC试件设计方案

    Table  4.   Design scheme of PVA/RAC specimens

    Test itemDesign size/mmQuantity
    Cube compressive strength 100×100×100 63
    Axial compressive strength 100×100×300 63
    Flexural strength 100×100×400 63
    下载: 导出CSV
  • [1] SIDDIQUE R, SINGH G, SINGH M. Recycle option for metallurgical by-product (Spent Foundry Sand) in green concrete for sustainable construction[J]. Journal of Cleaner Production,2018,172:1111-1120. doi: 10.1016/j.jclepro.2017.10.255
    [2] GUO Z G, TU A, CHEN C, et al. Mechanical properties, durability, and life-cycle assessment of concrete building blocks incorporating recycled concrete aggregates[J]. Journal of Cleaner Production,2018,199:136-149. doi: 10.1016/j.jclepro.2018.07.069
    [3] ALEXANDRIDOU C, ANGELOPOULOS G N, COUTELIERIS F A. Mechanical and durability performance of concrete produced with recycled aggregates from Greek construction and demolition waste plants[J]. Journal of Cleaner Production,2018,176:745-757. doi: 10.1016/j.jclepro.2017.12.081
    [4] OIKONOMOU N D. Recycled concrete aggregates[J]. Cement and Concrete Composites,2004,27(2):315-318.
    [5] MANZI S, MAZZOTTI C, BIGNOZZI M C. Short and long-term behavior of structural concrete with recycled concrete aggregate[J]. Cement and Concrete Composites,2013,37:312-318. doi: 10.1016/j.cemconcomp.2013.01.003
    [6] TAM V W Y, GAO X F, TAM C M. Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach[J]. Cement and Concrete Research,2005,35(6):1195-1203. doi: 10.1016/j.cemconres.2004.10.025
    [7] XIAO J Z, LI W G, FAN Y H, et al. An overview of study on recycled aggregate concrete in China (1996-2011)[J]. Construction and Building Materials,2012,31:364-383. doi: 10.1016/j.conbuildmat.2011.12.074
    [8] TAM V W Y, TAM C M, WANG Y. Optimization on proportion for recycled aggregate in concrete using two-stage mixing approach[J]. Construction and Building Materials,2007,21(10):1928-1939. doi: 10.1016/j.conbuildmat.2006.05.040
    [9] BRU K, TOUZÉ S, BOURGEOIS F, et al. Assessment of a microwave-assisted recycling process for the recovery of high-quality aggregates from concrete waste[J]. International Journal of Mineral Processing,2014,126:90-98. doi: 10.1016/j.minpro.2013.11.009
    [10] JOB T, NASSIFN T, WILSON P M. Strength and durability of concrete containing recycled concrete aggregates[J]. Journal of Building Engineering,2018,19:349-365. doi: 10.1016/j.jobe.2018.05.007
    [11] KATZ A. Treatments for the improvement of recycled aggregate[J]. Journal of Materials in Civil Engineering,2004,16(6):597-603. doi: 10.1061/(ASCE)0899-1561(2004)16:6(597)
    [12] KOU S C, POON C S. Properties of concrete prepared with PVA impregnated recycled concrete aggregates[J]. Cement and Concrete Composites,2010,32(8):649-654. doi: 10.1016/j.cemconcomp.2010.05.003
    [13] BERNAL J, REYES E, MASSANA J, et al. Fresh and mechanical behavior of a self-compacting concrete with additions of nano-silica, silica fume and ternary mixtures[J]. Construction and Building Materials,2018,160:196-210. doi: 10.1016/j.conbuildmat.2017.11.048
    [14] GÜNEYISI E, GESOGLU M, AL-GOODY A, et al. Fresh and rheological behavior of nano-silica and fly ash blended self-compacting concrete[J]. Construction and Building Materials,2015,95:29-44. doi: 10.1016/j.conbuildmat.2015.07.142
    [15] SENARTNE S, GERACE D, MIRZA O, et al. The costs and benefits of combining recycled aggregate with steel fibers as a sustainable, structural material[J]. Journal of Cleaner Production,2016,112:2318-2327. doi: 10.1016/j.jclepro.2015.10.041
    [16] WANG Y G, LI S P, HUGHES P, et al. Mechanical properties and microstructure of basalt fiber and nano-silica reinforced recycled concrete after exposure to elevated temperatures[J]. Construction and Building Materials,2020,247:118561. doi: 10.1016/j.conbuildmat.2020.118561
    [17] WANG L, ZHOU S H, SHI Y, et al. Effect of silica fume and PVA fiber on the abrasion resistance and volume stability of concrete[J]. Composites Part B: Engineering,2017,130:28-37. doi: 10.1016/j.compositesb.2017.07.058
    [18] SHI C J, WU Z M, CAO Z J, et al. Performance of mortar prepared with recycled concrete aggregate enhanced by CO2 and pozzolan slurry[J]. Cement and Concrete Composites,2018,86:130-138. doi: 10.1016/j.cemconcomp.2017.10.013
    [19] BAHADORI H, HOSSEINI P. Reduction of cement consumption by the aid of silica nano-particles (Investigation on concrete properties)[J]. Journal of Civil Engineering and Management,2012,18(3):416-425. doi: 10.3846/13923730.2012.698912
    [20] JUMAH M T, ÖZAKCA M. Developing geopolymer concrete by using cold-bonded fly ash aggregate nano-silica and steel fiber[J]. Construction and Building Materials,2018,180:12-22. doi: 10.1016/j.conbuildmat.2018.05.274
    [21] 王仕富, 曾晓辉, 王平, 等. PVA及玄武岩纤维对水泥基复合材料力学性能的影响[J]. 功能材料, 2020, 51(4):4072-4076. doi: 10.3969/j.issn.1001-9731.2020.04.012

    WANG Shifu, ZENG Xiaohui, WANG Ping, et al. Effect of PVA and basalt fiber on mechanical properties of cement-based composites[J]. Journal of Function Materials,2020,51(4):4072-4076(in Chinese). doi: 10.3969/j.issn.1001-9731.2020.04.012
    [22] XIAO J Z, LI L, SHEN L M, et al. Compressive behaviour of recycled aggregate concrete under impact loading[J]. Cement and Concrete Research,2015,71:46-55. doi: 10.1016/j.cemconres.2015.01.014
    [23] LI W G, LUO Z Y, LONG C, et al. Effects of nano particle on the dynamic behaviors of recycled aggregate concrete under impact loading[J]. Materials & Design,2016,112:58-66.
    [24] SHAIKH F, CHAVDA V, MINHAJ N, et al. Effect of mixing methods of nano silica on properties of recycled aggregate concrete[J]. Structural Concrete,2017,150:49-55.
    [25] 中华人民共和国住房和城乡建设部. GB/T 50081—2019 混凝土物理力学性能试验方法标准[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB/T 50081—2019 Standard for test methods of concrete physical and mechanical properties[S]. Beijing: China Architecture and Building Press, 2019(in Chinese).
    [26] HUO J, HE Y, CHEN B. Experimental study on impact behaviour of concrete-filled steel tubes at elevated temperatures up to 800°C[J]. Materials and Structures,2014,47:263-283. doi: 10.1617/s11527-013-0059-8
    [27] BIBHUTI B M, SUDHIRKUMAR V B. Influence of nano-silica on the properties of recycled aggregate concrete[J]. Construction and Building Materials,2014,55:29-37. doi: 10.1016/j.conbuildmat.2014.01.003
    [28] WANG X G, CHENG F, WANG Y X, et al. Impact properties of recycled aggregate concrete with nanosilica modification[J]. Advances in Civil Engineering,2020(8):1-10.
    [29] LIU T J, WANG Z Z, ZOU D J, et al. Strength enhancement of recycled aggregate pervious concrete using a cement paste redistribution method[J]. Cement and Concrete Research,2019,122:72-82. doi: 10.1016/j.cemconres.2019.05.004
    [30] JALAL A, SHAFIQ N, NIKBAKHT E, et al. Mechanical properties of hybrid basalt-polyvinyl alcohol (PVA) fiber reinforced concrete[J]. Key Engineering Materials,2017,744:3-7. doi: 10.4028/www.scientific.net/KEM.744.3
    [31] 肖建庄, 李标, 张凯建, 等. 纳米二氧化硅改性再生混凝土的单轴受压动态力学性能[J]. 同济大学学报(自然科学版), 2021, 49(1):30-39. doi: 10.11908/j.issn.0253-374x.20261

    XIAO Jianzhuang, LI Biao, ZHANG Kaijian, et al. Dynamic mechanical properties of nano-silica modified recycled aggregate concrete under uniaxial compression[J]. Journal of Tongji University (Natural Science),2021,49(1):30-39(in Chinese). doi: 10.11908/j.issn.0253-374x.20261
    [32] LOKTS, ZHAO P J. Impact response of steel fiber-reinforced concrete using a split hopkinson pressure bar[J]. Journal of Materials in Civil Engineering,2004,16(1):54-59. doi: 10.1061/(ASCE)0899-1561(2004)16:1(54)
    [33] POON C S, SHUI Z H, LAM L. Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates[J]. Construction and Building Materials,2004,18(6):461-468. doi: 10.1016/j.conbuildmat.2004.03.005
    [34] BISCHOFF P H, PERRY S H. Compressive behaviour of concrete at high strain rates[J]. Materials and Structures,1991,24:425-450. doi: 10.1007/BF02472016
    [35] LU Y B, CHEN X, TENG X, et al. Dynamic compressive behavior of recycled aggregate concrete based on split Hopkinson pressure bar test[J]. Latin American Journal of Solids and Structures,2014,11(1):131-141. doi: 10.1590/S1679-78252014000100008
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  690
  • HTML全文浏览量:  514
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-26
  • 修回日期:  2021-04-29
  • 录用日期:  2021-05-11
  • 网络出版日期:  2021-05-21
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回