留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag@AgCl改性Bi4Ti3O12的制备及其可见光催化性能

欧安琪 罗洁 曹海林 张越纯 刘慎 刘佳伟

欧安琪, 罗洁, 曹海林, 等. Ag@AgCl改性Bi4Ti3O12的制备及其可见光催化性能[J]. 复合材料学报, 2022, 39(4): 1648-1656. doi: 10.13801/j.cnki.fhclxb.20210518.010
引用本文: 欧安琪, 罗洁, 曹海林, 等. Ag@AgCl改性Bi4Ti3O12的制备及其可见光催化性能[J]. 复合材料学报, 2022, 39(4): 1648-1656. doi: 10.13801/j.cnki.fhclxb.20210518.010
OU Anqi, LUO Jie, CAO Hailin, et al. Preparation of Ag@AgCl modified Bi4Ti3O12 and its visible light catalytic performance[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1648-1656. doi: 10.13801/j.cnki.fhclxb.20210518.010
Citation: OU Anqi, LUO Jie, CAO Hailin, et al. Preparation of Ag@AgCl modified Bi4Ti3O12 and its visible light catalytic performance[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1648-1656. doi: 10.13801/j.cnki.fhclxb.20210518.010

Ag@AgCl改性Bi4Ti3O12的制备及其可见光催化性能

doi: 10.13801/j.cnki.fhclxb.20210518.010
基金项目: 国家重点研发计划项目(2019YFB1503805);湖南省自然科学基金(2019JJ4053);国家大学生创新训练计划项目(201810538009);工信部绿色制造系统集成项目(2016-51)
详细信息
    通讯作者:

    罗洁,硕士,副教授,硕士生导师,研究方向为光催化和环境功能材料方面 E-mail:luojie1999@126.com

  • 中图分类号: O643.3

Preparation of Ag@AgCl modified Bi4Ti3O12 and its visible light catalytic performance

  • 摘要: 以五水硝酸铋为铋源、钛酸四丁酯为钛源,通过水热法制备了Bi4Ti3O12,再以硝酸银为银源、盐酸为氯源,采用光照还原Bi4Ti3O12得到Ag@AgCl/Bi4Ti3O12复合材料。利用XRD、UV-Vis DRS、SEM、TEM、BET和XPS等方法对所制备材料的组成和结构进行表征和分析,并以甲基橙(MO)溶液的脱色率为评价标准,考察了所制备材料的可见光催化性能和活性物质。结果表明:制备的Bi4Ti3O12呈堆积花球状纳米片结构,Ag@AgCl颗粒沉积在Bi4Ti3O12片间,比表面积增大到14.30 m2/g,对可见光的吸收增强。当催化剂用量为0.5 g/L、在300 W氙灯照射80 mL 10 mg/L MO溶液30 min时,Ag@AgCl/Bi4Ti3O12的脱色率为96.71%,较Bi4Ti3O12提高38.28%,降解实验循环稳定性强,超氧自由基(•O2)在降解过程中起决定性作用。

     

  • 图  1  Bi4Ti3O12和Ag@AgCl/Bi4Ti3O12的XRD图谱

    Figure  1.  XRD spectra of Bi4Ti3O12 and Ag@AgCl/Bi4Ti3O12

    图  2  Bi4Ti3O12和Ag@AgCl/Bi4Ti3O12的紫外可见漫反射光图谱 (a) 和Kubelka-Munk公式 (b)

    Figure  2.  UV-Vis diffuse reflectance spectra of Bi4Ti3O12 and Ag@AgCl/Bi4Ti3O12 (a) and Kubelka-Munk formula (b)

    Eg—Energy gap; α—Absorptivity; h—Planck constant; v—Frequency

    图  3  Ag@AgCl/Bi4Ti3O12的SEM图像 ((a)、(b)) 和EDS能谱 (c)

    Figure  3.  SEM images ((a), (b)) and EDS spectrum (c) of Ag@AgCl/Bi4Ti3O12

    图  4  Ag@AgCl/Bi4Ti3O12的TEM图像 (a) 和HRTEM图像 (b)

    Figure  4.  TEM image (a) and HRTEM image (b) of Ag@AgCl/Bi4Ti3O12

    图  5  Bi4Ti3O12和Ag@AgCl/Bi4Ti3O12的N2吸附-脱附等温线

    Figure  5.  N2 adsorption-desorption isotherm of Bi4Ti3O12 and Ag@AgCl/Bi4Ti3O12

    STP—In standard state; $p $—N2 partial pressure; $p_0 $—At the temperature of liquid nitrogen, the saturated vapor pressure of N2

    图  6  Ag@AgCl/Bi4Ti3O12的XPS图谱

    Figure  6.  XPS spectra of Ag@AgCl/Bi4Ti3O12

    图  7  Bi4Ti3O12和Ag@AgCl/Bi4Ti3O12在甲基橙(MO)溶液降解效果 (a)、Ag@AgCl/Bi4Ti3O12对不同目标污染物降解效果 (b)

    Figure  7.  Degradation effect of Bi4Ti3O12 and Ag@AgCl/Bi4Ti3O12 in methyl orange (MO) solution (a) and degradation effect of Ag@AgCl/Bi4Ti3O12 on different target pollutants (b)

    C0—Initial absorbance; Ct—Absorbance at light time t; TC—Tetracycline hydrochloride

    图  8  Ag@AgCl/Bi4Ti3O12在MO溶液对自由基抑制剂光催化效果 (a)和Ag@AgCl/Bi4Ti3O12在MO溶液循环反应效果 (b)

    Figure  8.  Photocatalytic effect of Ag@AgCl/Bi4Ti3O12 on the free radical inhibitor in MO solution (a), and the cyclic reaction effect of Ag@AgCl/Bi4Ti3O12 in MO solution (b)

    IPA—Isopropanol; BQ—Benzoquinone; ACS—Ammonium oxalate

  • [1] HE R, XU D, BEI C, et al. Review on nanoscale Bi-based photocatalysts[J]. Nanoscale Horizons,2018,3:464. doi: 10.1039/C8NH00062J
    [2] DING Y B, ZHANG G L, WANG X, et al. Chemical and photocatalytic oxidative degradation of carbamazepine by using metastable Bi3+ self-doped NaBiO3 nanosheets as a bifunctional material[J]. Applied Catalysis B Environmental,2017:202528-202538.
    [3] ZHAO K, ZHANG L, WANG J, et al. Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets[J]. Journal of the American Chemical Society,2013,135(42):15750-15753. doi: 10.1021/ja4092903
    [4] LIU L Z, HUANG H W, CHEN F, et al. Cooperation of oxygen vacancies and 2D ultrathin structure promoting CO2 photoreduction performance of Bi4Ti3O12[J]. Science Bulletin,2020,65(11):934-943. doi: 10.1016/j.scib.2020.02.019
    [5] NIU S Y, ZHANG R Y, XIANG J C, et al. Morphology-dependent photocatalytic performance of Bi4Ti3O12[J]. Ceramics International,2020,46(5):6782-6786. doi: 10.1016/j.ceramint.2019.11.169
    [6] GANG X, YANG Y, BAI H, et al. Hydrothermal synthesis and formation mechanism of the single-crystalline Bi4Ti3O12 nanosheets with dominant (010) facets[J]. Crystengcomm,2016,18(13):2268-2274.
    [7] ZHANG Y G, ZHENG H W, ZHANG J X, et al. Photovoltaic effects in Bi4Ti3O12 thin film prepared by a sol-gel method[J]. Materials Letters,2014,125:25-27. doi: 10.1016/j.matlet.2014.03.146
    [8] ZHANG C S, GUO C J. Synthesis of plated-like template Bi4Ti3O12 particles and properties[J]. Advanced Materials Research,2011,1268(481):2170-2173.
    [9] ZHANG M, LIU Y, LI L, et al. BiOCl nanosheet/Bi4Ti3O12 nanofiber heterostructures with enhanced photocatalytic activity[J]. Catalysis Communications,2015,58:122-126. doi: 10.1016/j.catcom.2014.09.021
    [10] NAVARRO-ROJERO M G, ROMERO J J, RUBIO-MARCOS F, et al. Intermediate phases formation during the synthesis of Bi4Ti3O12 by solid state reaction[J]. Ceramics International,2010,36(4):1319-1325. doi: 10.1016/j.ceramint.2009.12.023
    [11] ZHANG M, LIU Y, LI L, et al. BiOCl nanosheet/Bi4Ti3O12 nanofiber heterostructures with enhanced photocatalytic activity[J]. Catalysis Communications, 2015, 58: 122-126.
    [12] HE Z, ZHAO Y, YU P, et al. Constructing Bi4Ti3O12/CdS heterostructure by atomic layer deposition for increased photocatalytic performance through suppressed electron/hole recombination[J]. Journal of Alloys and Compounds,2021,866:158978. doi: 10.1016/j.jallcom.2021.158978
    [13] 张根, 黄自力, 葛胜涛, 等. Bi4Ti3O12/g-C3N4复合光催化剂的制备及其光催化性能研究[J]. 现代化工, 2020, 40(8):83-87.

    ZHANG G, HUANG Z L, GE S T, et al. Preparation of Bi4Ti3O12/g-C3N4 composite photocatalyst and its photocatalytic performance[J]. Modern Engineering,2020,40(8):83-87(in Chinese).
    [14] 李跃军, 曹铁平, 孙大伟, 等. Bi@Bi4Ti3O12/TiO2等离子体复合纤维的制备及增强可见光催化性能[J]. 复合材料学报, 2020, 37(3):609-617.

    LI Y J, CAO T P, SUN D W, et al. Preparation of Bi@Bi4Ti3O12/TiO2 plasma composite fiber and enhanced visible light catalytic performance[J]. Journal of Compo-site Materials,2020,37(3):609-617(in Chinese).
    [15] 汪玲, 李雪. Ag/AgBr/Bi4Ti3O12催化剂的制备及可见光催化降解卡马西平[J]. 信阳师范学院学报(自然科学版), 2019, 32(2):293-297.

    WANG L, LI X. Preparation of Ag/AgBr/Bi4Ti3O12 catalyst and visible light catalytic degradation of carbamazepine[J]. Journal of Xinyang Normal University (Natural Science Edition),2019,32(2):293-297(in Chinese).
    [16] JIANG C J, QIU S Q, XU D F, et al. Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO2 nanotube arrays for photocatalytic CO2 reduction[J]. Applied Surface Science,2018,434:423-432.
    [17] WANG P, HUANG B B, QIN X Y, et al. Ag@AgCl: A highly efficient and stable photocatalyst active under visible light[J]. Angewandte Chemie International Edition,2010,47(41):7931-7933.
    [18] ZHAO M, YUAN Q, ZHANG H, et al. Synergy of adsorption and photocatalysis on removal of high-concentration dye by Ag/AgCl/Bi6O4(OH)4(NO3)6•H2O nanocomposite using Bi12O17Cl2 as bismuth source[J]. Journal of Alloys and Compounds,2019,782:1049-1057. doi: 10.1016/j.jallcom.2018.12.218
    [19] XIAO J Q, LIN K S, YU Y. Novel Ag@AgCl@AgBr heterostructured nanotubes as high-performance visible-light photocatalysts for decomposition of dyes[J]. Catalysis Today,2018,314:10-19. doi: 10.1016/j.cattod.2018.04.019
    [20] SUN L L, LIU C Y, LI J Z, et al. Fast electron transfer and enhanced visible light photocatalytic activity by using poly-o-phenylenediamine modified AgCl/g-C3N4 nanosheets[J]. Chinese Journal of Catalysis,2019,40(3):80-94.
    [21] ASADZADEH-KHANEGHAH S, HABIBI- YANGJEH A, ABEDI M. Decoration of carbon dots and AgCl over g-C3N4 nanosheets: Novel photocatalysts with substantially improved activity under visible light[J]. Separation and Purification Technology,2018,199:64-77. doi: 10.1016/j.seppur.2018.01.023
    [22] KONG X G, LI L, GUO Z L, et al. Soft chemical in situ synthesis and photocatalytic performance of 1D Ag/AgCl/V2O5 hetero-nanostructures[J]. Materials Letters,2016,183(15):215-218.
    [23] 王学川, 刘轩, 韩庆鑫, 等. 光辅助原位清洁制备Ag/AgCl纳米颗粒[J]. 精细化工, 2020, 37(8):1608-1614.

    WANG X C, LIU X, HAN Q X, et al. Photo-assisted in-situ cleaning of Ag/AgCl nanoparticles[J]. Fine Chemicals,2020,37(8):1608-1614(in Chinese).
    [24] MA B W, GUO J F, DAI W L, et al. Ag-AgCl/WO3 hollow sphere with flower-like structure and superior visible photocatalytic activity[J]. Applied Catalysis B Environmental,2012,123-124(30):193-199.
    [25] YIN H Y, WANG X L, WANG L, et al. Ag/AgCl modified self-doped TiO2 hollow sphere with enhanced visible light photocatalytic activity[J]. Journal of Alloys and Compounds,2016,657:44-52. doi: 10.1016/j.jallcom.2015.10.055
    [26] LIANG Y H, LIN S L, LIU L, et al. Oil-in-water self-assembled Ag@AgCl QDs sensitized Bi2WO6: Enhanced photocatalytic degradation under visible light irradiation[J]. Applied Catalysis B Environmental,2015:164192-164203.
    [27] LIU L Q, OUYANG S X, YE J H, et al. Gold-nanorod-photosensitized titanium dioxide with wide-range visible-light harvesting based on localized surface plasmon resonance[J]. Angewandte Chemie,2013,125(26):6821-6825. doi: 10.1002/ange.201300239
    [28] WANG D, HUANG L, GUO Z N, et al. Enhanced photocatalytic hydrogen production over Au/SiC for water reduction by localized surface plasmon resonance effect[J]. Applied Surface Science,2018,456:871-875. doi: 10.1016/j.apsusc.2018.06.099
    [29] SING S K. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure & Applied Chemistry,1985,57(4):603-619.
    [30] ZHANG S W, LI J X, WANG X K, et al. In situ ion exchange synthesis of strongly coupled Ag@AgCl/g-C3N4 porous nanosheets as plasmonic photocatalyst for highly efficient visible-light photocatalysis[J]. Acs Applied Materials & Interfaces,2014,6(24):22116-22125.
    [31] HOU D F, HU X L, PEI H, et al. Bi4Ti3O12 nanofibers-BiOI nanosheets p-n junction: Facile synthesis and enhanced visible-light photocatalytic activity[J]. Nanoscale,2013,5(20):9764-9772. doi: 10.1039/c3nr02458j
  • 加载中
图(8)
计量
  • 文章访问数:  1439
  • HTML全文浏览量:  663
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-31
  • 修回日期:  2021-05-08
  • 录用日期:  2021-05-10
  • 网络出版日期:  2021-05-19
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回