留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiO2/石墨烯夹层结构复合材料的制备及光催化性能

曾雄丰 王梦幻 王建省 赵英娜 张文丽

曾雄丰, 王梦幻, 王建省, 等. TiO2/石墨烯夹层结构复合材料的制备及光催化性能[J]. 复合材料学报, 2022, 39(2): 656-663. doi: 10.13801/j.cnki.fhclxb.20210518.009
引用本文: 曾雄丰, 王梦幻, 王建省, 等. TiO2/石墨烯夹层结构复合材料的制备及光催化性能[J]. 复合材料学报, 2022, 39(2): 656-663. doi: 10.13801/j.cnki.fhclxb.20210518.009
ZENG Xiongfeng, WANG Menghuan, WANG Jiansheng, et al. Preparation and photocatalytic properties TiO2/graphene nanocomposites with sandwich structure[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 656-663. doi: 10.13801/j.cnki.fhclxb.20210518.009
Citation: ZENG Xiongfeng, WANG Menghuan, WANG Jiansheng, et al. Preparation and photocatalytic properties TiO2/graphene nanocomposites with sandwich structure[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 656-663. doi: 10.13801/j.cnki.fhclxb.20210518.009

TiO2/石墨烯夹层结构复合材料的制备及光催化性能

doi: 10.13801/j.cnki.fhclxb.20210518.009
基金项目: 河北省教育厅青年基金(QN2017117);河北省自然科学基金钢铁联合基金(E2019209374)
详细信息
    通讯作者:

    王建省,博士,讲师,研究方向为光催化、光电催化、光电化学腐蚀防护 E-mail: wangjiansheng@ncst.edu.cn

  • 中图分类号: O643

Preparation and photocatalytic properties TiO2/graphene nanocomposites with sandwich structure

  • 摘要: 以氧化石墨烯(GO)、1, 12-二氨基十二烷(C12H28N2)、TiO2溶胶为原料,通过预插层-离子交换-煅烧法制备TiO2/石墨烯夹层结构纳米复合材料。采用XRD、Raman、FTIR、TEM、TG、UV-Vis和PL对TiO2/石墨烯夹层结构纳米复合材料进行表征,并研究不同TiO2含量的TiO2/石墨烯纳米复合材料对环丙沙星(CIP)的光催化降解性能。在煅烧过程中,TiO2的晶化和GO的还原同时进行。根据XRD和FTIR结果推断,TiO2纳米颗粒在石墨烯层间原位生成,并通过化学键固定在石墨烯上,形成了石墨烯/TiO2/石墨烯夹层结构。当TiO2的质量分数为65.5wt%时,TiO2/石墨烯复合材料表现出对环丙沙星最佳的光催化活性,150 min光照后降解率为90%高于纯TiO2(28%、150 min)。这主要是特殊的夹层结构增强了光生电子-空穴分离。在光催化降解CIP的过程中,光生空穴和超氧自由基是主要的活性物质。此外,TiO2/石墨烯纳米复合材料具有较好的光稳定性和结构稳定性,在环境净化方面具有潜在的应用前景。

     

  • 图  1  空气气氛中不同TiO2含量的TiO2/石墨烯纳米复合材料的TGA曲线

    Figure  1.  TGA curves in air of the TiO2/graphene nanocomposites with different TiO2 mass fractions

    图  2  XRD图谱:(a) 氧化石墨烯(GO)、GO/dodecanediamine和GO/TiO2前驱体局部放大图[14];(b) 不同TiO2含量TiO2/石墨烯复合材料

    Figure  2.  XRD patterns: (a) Partial enlarged drawing of graphene oxide (GO), dodecanediamine/GO and TiO2/GO precursor; (b) TiO2/graphene nanocomposites with different TiO2 contents

    图  3  TiO2和TiO2/石墨烯纳米复合材料的拉曼光谱

    Figure  3.  Raman spectra of pure TiO2 and TiO2/graphene nanocomposites

    图  4  GO、还原氧化石墨烯(rGO)、TiO2/石墨烯纳米复合材料和TiO2的FTIR图谱

    Figure  4.  FTIR spectra of GO, reduced graphene oxide (rGO), TiO2/graphene nanocomposites and pure TiO2

    图  5  GO (a) 和TiO2/rGO(65.5wt%) (b) 的TEM图像((b)中插图为TiO2/rGO(65.5wt%)的HRTEM图像)

    Figure  5.  TEM images of GO (a) and TiO2/rGO(65.5wt%) (b) (Inset in (b) shows HRTEM image of TiO2/rGO(65.5wt%))

    图  6  不同光催化剂对环丙沙星(CIP)的吸附

    Figure  6.  Adsorption of ciprofloxacin (CIP) at presence of different photocatalysts

    图  7  不同催化剂光催化降解CIP曲线

    Figure  7.  Photocatalytic degradation rates of CIP at presence of different photocatalysts

    图  8  TiO2/rGO(65.5wt%)光催化降解CIP的循环实验(每个循环照射时间150 min)

    Figure  8.  Photocatalytic degradation rates of CIP after repeated cycles by TiO2/rGO(65.5wt%) (Irradiation time lasted 150 min of each cycle)

    图  9  TiO2和TiO2/rGO(65.5wt%)的PL曲线(激发波长380 nm)

    Figure  9.  PL curves of pure TiO2 and TiO2/rGO(65.5wt%) (Excitation: 380 nm)

    图  10  牺牲剂对TiO2/rGO (65.5wt%)降解CIP的影响

    Figure  10.  Photocatalytic degradation rates of CIP for TiO2/rGO (65.5wt%) at presence of different scavengers

    TEOA—Triethanolamine; BQ—Benzoquinone; IPA—Isopropanol

    图  11  TiO2/石墨烯夹层结构复合材料光催化CIP机制示意图

    Figure  11.  Schematic illustration of photocatalytic mechanism for CIP by TiO2/graphene composites with sandwich structure

    rGO—Reduced graphene oxide; CB—Conduction band; VB—Valence band

  • [1] 张延, 严晓菊, 孙越, 等. 中国抗生素滥用现状及其在环境中的分布情况[J]. 当代化工, 2019, 48(11):2660-2662, 2666. doi: 10.3969/j.issn.1671-0460.2019.11.054

    ZHANG Yan, YAN Xiaoju, SUN Yue, et al. Current situation of antibiotic abuse in China and itsresidues distribution in the environment[J]. Contemporary Chemical Industry,2019,48(11):2660-2662, 2666(in Chinese). doi: 10.3969/j.issn.1671-0460.2019.11.054
    [2] 孙玉伟, 赵爽, 刘锐涵, 等. 可磁分离ZnFe2O4-TiO2/还原氧化石墨烯复合材料的制备及光催化性能[J]. 复合材料学报, 2020, 37(4):758-766.

    SUN Yuwei, ZHAO Shuang, LIU Ruihan, et al. Preparation and photocatalytic properties of magnetically separatable ZnFe2O4-TiO2/reduced graphene oxide composites[J]. Acta Materiae Compositae Sinica,2020,37(4):758-766(in Chinese).
    [3] 张雅星, 庞少华, 于丽平, 等. 改性TiO2光催化降解苯酚研究进展[J]. 环境与发展, 2020, 32(12):112-113.

    ZHANG Yaxing, PANG Shaohua, YU Liping, et al. Research progress of photocatalytic degradation of phenol by modified TiO2[J]. Environment and Development,2020,32(12):112-113(in Chinese).
    [4] 芦琼, 翟莉慧, 肖寒, 等. TiO2掺杂改性提高光催化剂有机物降解能力技术研究进展[J]. 广东化工, 2021, 48(1):37-39, 59. doi: 10.3969/j.issn.1007-1865.2021.01.017

    LU Qiong, ZHAI Lihui, XIAO Han, et al. Research progress of doping modification of TiO2 to improve photocatalyst organic degradation[J]. Guangdong Chemical Industry,2021,48(1):37-39, 59(in Chinese). doi: 10.3969/j.issn.1007-1865.2021.01.017
    [5] WANG F, YU X, GE M, et al. One-step synthesis of TiO2/γ-Fe2O3/GO nanocomposites for visible light-driven degradation of ciprofloxacin[J]. Chemical Engineering Journal,2020,384:123381. doi: 10.1016/j.cej.2019.123381
    [6] KOMARAIAH D, RADHA E, SIVAKUMAR J, et al. Photoluminescence and photocatalytic activity of spin coated Ag+ doped anatase TiO2 thin films[J]. Optical Materials,2020,108:110401. doi: 10.1016/j.optmat.2020.110401
    [7] KANAN S, MOYET M A, ARTHUR R B, et al. Recent advances on TiO2-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies[J]. Catalysis Reviews,2020,62(1):1-65. doi: 10.1080/01614940.2019.1613323
    [8] KHAN S A, ARSHAD Z, SHAHID S, et al. Synthesis of TiO2/Graphene oxide nanocomposites for their enhanced photocatalytic activity against methylene blue dye and ciprofloxacin[J]. Composites Part B: Engineering,2019,175:107120. doi: 10.1016/j.compositesb.2019.107120
    [9] HUMAYUN M, RAZIQ F, KHAN A, et al. Modification strategies of TiO2 for potential applications in photocatalysis: a critical review[J]. Green Chemistry Letters and Reviews,2018,11(2):86-102. doi: 10.1080/17518253.2018.1440324
    [10] 刘乃亮, 连欣巧, 姚秉华, 等. TiO2/RGO纳米复合光催化剂的制备及性能研究[J]. 化工新型材料, 2019, 47(12):261-265.

    LIU Nailiang, LIAN Xinqiao, YAO Binghua, et al. Preparation and characterization of TiO2 / RGO nanocomposite photocatalyst[J]. New Chemical Materials,2019,47(12):261-265(in Chinese).
    [11] LIU H, ZHU D, SHI H, et al. Fabrication of a contamination-free interface between graphene and TiO2 single crystals[J]. ACS Omega,2016,1(2):168-176. doi: 10.1021/acsomega.6b00074
    [12] ASHRAF M A, LIU Z, PENG W X, et al. Combination of sonochemical and freeze-drying methods for synthesis of graphene/Ag-doped TiO2 nanocomposite: A strategy to boost the photocatalytic performance via well distribution of nanoparticles between graphene sheets[J]. Ceramics International,2020,46(6):7446-7452. doi: 10.1016/j.ceramint.2019.11.241
    [13] PIAN X, LIN B, CHEN Y, et al. Pillared nanocomposite TiO2/Bi-doped hexaniobate with visible-light photocatalytic activity[J]. The Journal of Physical Chemistry C,2011,115(14):6531-6539. doi: 10.1021/jp1097553
    [14] ZENG X, WANG J, ZHAO Y, et al. Construction of TiO2-pillared multilayer graphene nanocomposites as efficient photocatalysts for ciprofloxacin degradation[J]. International Journal of Minerals, Metallurgy and Materials,2021,28(3):503-510. doi: 10.1007/s12613-020-2193-y
    [15] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society,1958,80(6):1334-1339. doi: 10.1021/ja01539a017
    [16] CHEN R, WANG J, WANG H, et al. Photocatalytic degradation of methyl orange in aqueous solution over titania-pillared α-zirconium phosphate[J]. Solid State Sciences,2011,13(3):630-635. doi: 10.1016/j.solidstatesciences.2010.12.037
    [17] HUANG Z, ZHOU A, WU J, et al. Bottom-up preparation of ultrathin 2D aluminum oxide nanosheets by duplicating graphene oxide[J]. Advanced Materials,2016,28(8):1703-1708. doi: 10.1002/adma.201504484
    [18] YAO W, LI Y, YAN D, et al. Fabrication and photocatalysis of TiO2-graphene sandwich nanosheets with smooth surface and controlled thickness[J]. Chemical Engineering Journal,2013,229:569-576. doi: 10.1016/j.cej.2013.06.027
    [19] AZARANG M, SHUHAIMI A, YOUSEFI R, et al. Effects of graphene oxide concentration on optical properties of ZnO/RGO nanocomposites and their application to photocurrent generation[J]. Journal of Applied Physics,2014,116(8):084307. doi: 10.1063/1.4894141
    [20] XU X, SHI W, LI P, et al. Facile fabrication of three-dimensional graphene and metal-organic framework composites and their derivatives for flexible all-solid-state supercapacitors[J]. Chemistry of Materials,2017,29(14):6058-6065. doi: 10.1021/acs.chemmater.7b01947
    [21] WANG P, WANG J, WANG X, et al. One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity[J]. Applied Catalysis B: Environmental,2013,132:452-459.
    [22] NGUYENPHAN T, PHAM V H, SHIN E W, et al. The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide compo-sites[J]. Chemical Engineering Journal,2011,170(1):226-232. doi: 10.1016/j.cej.2011.03.060
    [23] HAMANDI M, BERHAULT G, GUILLARD C, et al. Reduced graphene oxide/TiO2 nanotube composites for formic acid photodegradation[J]. Applied Catalysis B: Environmental,2017,209:203-213. doi: 10.1016/j.apcatb.2017.02.062
    [24] ZHAO G, LI C, WU X, et al. Reduced graphene oxide modified NiFe-calcinated layered double hydroxides for enhanced photocatalytic removal of methylene blue[J]. Applied Surface Science,2018,434:251-259. doi: 10.1016/j.apsusc.2017.10.181
  • 加载中
图(11)
计量
  • 文章访问数:  1470
  • HTML全文浏览量:  733
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-08
  • 修回日期:  2021-05-12
  • 录用日期:  2021-05-13
  • 网络出版日期:  2021-05-18
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回