留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维增强树脂复合材料中的褶皱缺陷:分散性与虚拟测试

申川川 马利 文安戈 郭静 郑津洋

申川川, 马利, 文安戈, 等. 纤维增强树脂复合材料中的褶皱缺陷:分散性与虚拟测试[J]. 复合材料学报, 2022, 39(3): 1332-1342. doi: 10.13801/j.cnki.fhclxb.20210518.007
引用本文: 申川川, 马利, 文安戈, 等. 纤维增强树脂复合材料中的褶皱缺陷:分散性与虚拟测试[J]. 复合材料学报, 2022, 39(3): 1332-1342. doi: 10.13801/j.cnki.fhclxb.20210518.007
SHEN Chuanchuan, MA Li, WEN Ange, et al. Wrinkles in fiber-reinforced resin composites: Heterogeneity and virtual test[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1332-1342. doi: 10.13801/j.cnki.fhclxb.20210518.007
Citation: SHEN Chuanchuan, MA Li, WEN Ange, et al. Wrinkles in fiber-reinforced resin composites: Heterogeneity and virtual test[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1332-1342. doi: 10.13801/j.cnki.fhclxb.20210518.007

纤维增强树脂复合材料中的褶皱缺陷:分散性与虚拟测试

doi: 10.13801/j.cnki.fhclxb.20210518.007
基金项目: 国家重点研发计划资助项目(2019YFB1504801);浙江省重点研发计划资助项目(2020C01118);浙江省自然科学基金项目(LQ17E050007)
详细信息
    通讯作者:

    马利,博士,副教授,硕士生导师,研究方向为复合材料力学及冲击动力学 E-mail:malizjut@zjut.edu.cn

  • 中图分类号: TB332;V258.3

Wrinkles in fiber-reinforced resin composites: Heterogeneity and virtual test

  • 摘要: 在纤维增强树脂复合材料结构中,褶皱缺陷的物理形态及其空间分布通常具有分散性,如果仅追踪某个单一褶皱缺陷的行为演化,则不能有效控制复合材料批量构件性能的一致性。本论文提出了一种褶皱缺陷分散性模型,该模型包括褶皱形态的正态分布和空间位置的随机分布,以及将该模型植入自主开发的有限元程序的算法实现。由于计算程序中考虑了褶皱缺陷的概率分布,每进行一次力学响应计算就相当于进行一次复合材料结构虚拟测试,计算程序运行多次即可获得结构响应的上、下限,在设计阶段就可以预测褶皱缺陷分散性对结构宏观力学响应的影响,并在缺陷的统计指标和构件的力学性能之间建立量化关系。所建立的虚拟测试方法是复合材料创新设计方法的关键,能有效减少工程实践中复合材料结构对大批量试验的依赖。

     

  • 图  1  纤维偏转角随机正态分布[12]:(a)显微照相;(b)等值线图

    Figure  1.  Normal distribution of fiber orientations: (a) Micrograph section; (b) Contours of corresponding to fiber orientations

    图  2  含褶皱缺陷的纤维增强树脂复合材料层合板代表性单元(RVE)

    Figure  2.  Represent volume elements (RVE) of wrinkled fiber-reinforced resin composite laminates

    H—Thickness of each laminate; A—Amplitude of wrinkle;λ—Wavelength of wrinkle

    图  3  褶皱缺陷随机分布示意图

    Figure  3.  Schematic of random distribution of wrinkles

    图  4  褶皱模型植入有限元算法的流程图

    Figure  4.  Flow chart of implanting wrinkle model into finite element method

    图  5  CF/EP复合材料层合板拉伸计算模型

    Figure  5.  Computation case for CF/EP composite laminates under tensile load

    σ0—Axial tensile loading along horizontal direction

    图  6  褶皱波纹比正态分布模型(波纹比均值ζ0=0,波纹比标准差S=0.08)

    Figure  6.  Normal distribution model of wavelength ratio of wrinkles (average value of wrinkle ratio ζ0=0, standard deviation S=0.08)

    图  7  拉伸加载下无缺陷的CF/EP复合材料层合板归一化响应(ζ0=0, S=0)

    Figure  7.  Normalized displacement fields for pristine CF/EP composite laminates (ζ0=0, S=0) under tensile load

    图  8  拉伸加载下含随机正态分布褶皱的CF/EP复合材料层合板归一化响应(ζ0=0, S=0.08)

    Figure  8.  Normalized displacement fields for CF/EP composite laminates with randomly distributed wrinkles (ζ0=0, S=0.08) under tensile load

    图  9  CF/EP复合材料层合板横向低速冲击计算模型

    Figure  9.  Computation case for CF/EP composite laminates under transverse low-velocity impact load

    p(t)—Periodic oscillation attenuation load; t—Time; f—Maximum load; w—Angular frequency; b—Attenuation coefficient

    图  10  冲击载荷下无缺陷的CF/EP复合材料层合板归一化挠度响应(ζ0=0, S=0)

    Figure  10.  Normalized deflection response for pristine CF/EP composite laminates (ζ0=0, S=0) under impact load

    图  11  冲击载荷下含随机正态分布褶皱的CF/EP复合材料层合板归一化挠度响应(ζ0=0, S=0.08)

    Figure  11.  Normalized deflection response for CF/EP composite laminates with randomly distributed wrinkles (ζ0=0, S=0.08) under impact load

    图  12  含褶皱缺陷CF/EP复合材料层合板y方向位移时程曲线的振荡现象

    Figure  12.  Displacement oscillation in y direction for wrinkled CF/EP composite laminates

    图  13  含缺陷CF/EP复合材料层合板离面位移的虚拟测试(ζ0=0, S=0.04)

    Figure  13.  Virtual testing of out-of-plane displacements for wrinkled CF/EP composite laminates (ζ0=0, S=0.04)

    图  14  含缺陷CF/EP复合材料层合板离面位移的虚拟测试(ζ0=0, S=0.08)

    Figure  14.  Virtual testing of out-of-plane displacements for wrinkled CF/EP composite laminates (ζ0=0, S=0.08)

    图  15  虚拟测试的含缺陷CF/EP复合材料层合板离面位移结果统计

    Figure  15.  Statistical results of virtual testing of out-of-plane displacements for wrinkled CF/EP composite laminates

    图  16  基于虚拟测试的纤维增强树脂复合材料结构设计与无损检测策略

    Figure  16.  Strategy of structural design and non-destructive testing of fiber-reinforced resin composites based on virtual testing

    表  1  用于数值模拟的碳纤维/环氧树脂(CF/EP)复合材料弹性参数

    Table  1.   Elastic parameters of carbon fiber/epoxy resin (CF/EP) composites used in numerical simulation

    E11/GPa(E22/E33)/GPaG23/GPaG31/GPaG12/GPaν21ν32ν31
    133.3 9.09 3.16 7.24 7.23 0.261 0.436 0.261
    Notes: E11, E22, E33—Elastic modulus (direction 11, 22, 33); G12, G23, G31—Shear modulus (direction 12, 23, 31); v21, v32, v31—Poisson’s ratio (direction 21, 32, 31).
    下载: 导出CSV
  • [1] ZHU J, WANG J, ZU L. Influence of out-of-plane ply waviness on elastic properties of composite laminates under uniaxial loading[J]. Composite Structures,2015,132:440-450.
    [2] 庞艳荣, 赵文政, 张燕南, 等. 复合材料波纹褶皱区域损伤变形测量及声发射监测[J]. 玻璃钢/复合材料, 2017(8):53-60.

    PANG Yanrong, ZHAO Wenzheng, ZHANG Yannan, et al. Damage deformation measurement and acoustic emission monitoring of waves in composite materials[J]. Fiber Reinforced Plastics/Composites,2017(8):53-60(in Chinese).
    [3] TAKEDA T. Micromechanics model for three-dimensional effective elastic properties of composite laminates with ply wrinkles[J]. Composite Structures,2018,189:419-427. doi: 10.1016/j.compstruct.2017.10.086
    [4] BLOOM L D, WANG J, POTTER K D. Damage progression and defect sensitivity: An experimental study of representative wrinkles in tension[J]. Composites Part B: Engineering,2013,45(1):449-458. doi: 10.1016/j.compositesb.2012.05.021
    [5] EL-HAJJAR R F, PETERSEN D R. Gaussian function characterization of unnotched tension behavior in a carbon/epoxy composite containing localized fiber waviness[J]. Composite Structures,2011,93(9):2400-2408. doi: 10.1016/j.compstruct.2011.03.029
    [6] HSIAO H M, DANIEL I M. Effect of fiber waviness on stiffness and strength reduction of unidirectional composites under compressive loading[J]. Composites Science and Technology,1996,56(5):581-593. doi: 10.1016/0266-3538(96)00045-0
    [7] HSIAO H M, DANIEL I M. Elastic properties of composites with fiber waviness[J]. Composites Part A: Applied Science and Manufacturing,1996,27(10):931-941. doi: 10.1016/1359-835X(96)00034-6
    [8] RAI H G, ROGERS C W, CRANE D A. Mechanics of curved fiber composites[J]. Journal of Reinforced Plastics and Composites,1992,11(5):552-566. doi: 10.1177/073168449201100505
    [9] ZHU J, WANG J, NI A, et al. A multi-parameter model for stiffness prediction of composite laminates with out-of-plane ply waviness[J]. Composite Structures,2018,185:327-337. doi: 10.1016/j.compstruct.2017.11.020
    [10] 朱俊, 郭万涛, 李想, 等. 含面内波纹缺陷的复合材料层合板刚度性能[J]. 复合材料学报, 2018, 35(4):793-803.

    ZHU Jun, GUO Wantao, LI Xiang, et al. Stiffness of compo-site laminates with in-plane waviness defect[J]. Acta Materiae Compositae Sinica,2018,35(4):793-803(in Chinese).
    [11] 朱俊, 吴维清, 欧阳佳斯, 等. 面外波纹对复合材料层合板弹性性能的影响[J]. 复合材料学报, 2016, 33(9):1981-1988.

    ZHU Jun, WU Weiqing, OUYANG Jiasi, et al. Influence of out-of-plane waviness on elastic properties of composite laminates[J]. Acta Materiae Compositae Sinica,2016,33(9):1981-1988(in Chinese).
    [12] LEMANSKI S L, SUTCLIFFE M P F. Compressive failure of finite size unidirectional composite laminates with a region of fibre waviness[J]. Composites Part A: Applied Science and Manufacturing,2012,43(3):435-444. doi: 10.1016/j.compositesa.2011.11.007
    [13] WISNOM M R, ATKINSON J W. Compressive failure due to shear instability: Experimental investigation of waviness and correlation with analysis[J]. Journal of Reinforced Plastics and Composites,1996,15(4):420-439. doi: 10.1177/073168449601500404
    [14] XIE N, SMITH R A, MUKHOPADHYAY S, et al. A numerical study on the influence of composite wrinkle defect geometry on compressive strength[J]. Materials & Design,2018,140:7-20.
    [15] CHUN H, SHIN J, DANIEL I M. Effects of material and geometric nonlinearities on the tensile and compressive behavior of composite materials with fiber waviness[J]. Composites Science and Technology,2001,61(1):125-134. doi: 10.1016/S0266-3538(00)00201-3
    [16] MUKHOPADHYAY S, JONES M I, HALLETT S R. Compressive failure of laminates containing an embedded wrinkle: Experimental and numerical study[J]. Composites Part A: Applied Science and Manufacturing,2015,73:132-142. doi: 10.1016/j.compositesa.2015.03.012
    [17] MUKHOPADHYAY S, JONES M I, HALLETT S R. Tensile failure of laminates containing an embedded wrinkle: Numerical and experimental study[J]. Composites Part A: Applied Science and Manufacturing,2015,77:219-228. doi: 10.1016/j.compositesa.2015.07.007
    [18] CREIGHTON C J, SUTCLIFFE M, CLYNE T W. A multiple field image analysis procedure for characterisation of fibre alignment in composites[J]. Composites Part A: Applied Science and Manufacturing,2001,32(2):221-229. doi: 10.1016/S1359-835X(00)00115-9
    [19] LEMANSKI S L, SUTCLIFFE M P F, SCOTT A E. Characterisation of waviness defects in industrial composite samples [C]. Korea: Proceedings of the 18th International Conference on Composite Materials, 2011.
    [20] 崔深山. 面向积木式试验的复合材料典型结构件分析与验证[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    CUI Shenshan. Analysis and verification of typical structure of composite materials for building experiment[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).
    [21] 齐雯雯. 复合材料结构件多尺度虚拟测试及模型重用技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    QI Wenwen. Research on multi-scale virtual testing and model reusing of composites structures[D]. Harbin: Harbin Institute of Technology, 2016(in Chinese).
    [22] FAWCETTL A, ROSTLE J, WARD S. 777 Empennage certification approach[C]. Australia: Proceedings of the 11th International Conference on Composite Materials, 1997: 178-199.
    [23] SHAW A, SRIRAMULA S, GOSLING P D, et al. A critical reliability evaluation of fibre reinforced composite mater-ials based on probabilistic micro and macro-mechanical analysis[J]. Composites Part B: Engineering,2010,41(6):446-453. doi: 10.1016/j.compositesb.2010.05.005
    [24] SAFF C, HAHN G, GRIFFITH J. Accelerated insertion of materials-composites[C]. Texas: 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2005.
    [25] RIDDLE T W, CAIRNS D S, NELSON J W. Characterization of manufacturing defects common to composite wind turbine blades: Flaw characterization[C]. Colorado: 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2011.
    [26] MA L, SHEN C, ZHANG A, et al. Virtual tests of elastodynamic response of natural fiber-reinforced orthotropic plates[J]. Composite Structures,2018,192:264-273. doi: 10.1016/j.compstruct.2018.02.093
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  988
  • HTML全文浏览量:  823
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-11
  • 修回日期:  2021-04-22
  • 录用日期:  2021-05-04
  • 网络出版日期:  2021-05-18
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回