留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自修复氧化海藻酸钠-羧甲基壳聚糖水凝胶的制备及药物缓释性能

候冰娜 倪凯 沈慧玲 李征征

候冰娜, 倪凯, 沈慧玲, 等. 自修复氧化海藻酸钠-羧甲基壳聚糖水凝胶的制备及药物缓释性能[J]. 复合材料学报, 2022, 39(1): 250-257. doi: 10.13801/j.cnki.fhclxb.20210518.005
引用本文: 候冰娜, 倪凯, 沈慧玲, 等. 自修复氧化海藻酸钠-羧甲基壳聚糖水凝胶的制备及药物缓释性能[J]. 复合材料学报, 2022, 39(1): 250-257. doi: 10.13801/j.cnki.fhclxb.20210518.005
HOU Bingna, NI Kai, SHEN Huiling, et al. Preparation of self-healing oxidized sodium alginate-carboxymethyl chitosan hydrogel for sustained drug release[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 250-257. doi: 10.13801/j.cnki.fhclxb.20210518.005
Citation: HOU Bingna, NI Kai, SHEN Huiling, et al. Preparation of self-healing oxidized sodium alginate-carboxymethyl chitosan hydrogel for sustained drug release[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 250-257. doi: 10.13801/j.cnki.fhclxb.20210518.005

自修复氧化海藻酸钠-羧甲基壳聚糖水凝胶的制备及药物缓释性能

doi: 10.13801/j.cnki.fhclxb.20210518.005
基金项目: 天津市海洋资源与化学重点实验室(201706);2018年度天津市教委科研计划项目(2018KJ110);天津市制浆造纸重点实验室开放基金(201809)
详细信息
    通讯作者:

    李征征,博士,副研究员,硕士生导师,研究方向为智能高分子水凝胶及其生物医用研究 E-mail:li.z.z@tust.edu.cn

  • 中图分类号: TQ427.26;TQ460.4

Preparation of self-healing oxidized sodium alginate-carboxymethyl chitosan hydrogel for sustained drug release

  • 摘要: 本研究基于动态亚胺键合成了一种具有自修复性能的氧化海藻酸钠-羧甲基壳聚糖水凝胶(OSA-CMCS)。通过海藻酸钠的糖醛酸,合成了OSA,并通过与CMCS的席夫碱反应制备了具有不同交联度的自修复OSA-CMCS水凝胶,研究了OSA-CMCS水凝胶的微观形态、黏弹性能、溶胀性能、自修复性能、酶促降解性能和体外药物释放性能。结果表明,随着OSA与CMCS配比的增加,水凝胶的交联度逐渐增加,溶胀比逐渐减小。OSA-CMCS水凝胶具有高度孔隙化且孔隙之间相互连通的结构特点,孔径大小在20~100 μm范围内。室温条件下,OSA-CMCS水凝胶在无外界刺激时6 h能够实现自修复。OSA-CMCS水凝胶具有可降解性,并随着交联度的增大,降解速度减慢。OSA-CMCS水凝胶对水溶性药物吉西他滨具有缓释作用,药物释放时间可达4天。

     

  • 图  1  氧化海藻酸钠-羧甲基壳聚糖(OSA-CMCS)水凝胶的合成路线

    Figure  1.  Synthetic route of oxidized sodium alginate-carboxymethyl chitosan (OSA-CMCS) hydrogels

    图  2  SA和OSA的FTIR图谱 (a) 和核磁谱图 (b)

    Figure  2.  FTIR spectra (a) and 1H NMR spectra (b) of SA and OSA

    图  3  OSA、CMCS和OSA-30wt%CMCS、OSA-40wt%CMCS,OSA-50wt%CMCS水凝胶的FTIR图谱

    Figure  3.  FTIR spectra of OSA, CMCS and OSA-30wt%CMCS, OSA-40wt%CMCS, OSA-50wt%CMCS hydrogels

    图  4  OSA-30wt%CMCS (a)、OSA-40wt%CMCS (b) 和OSA-50wt%CMCS (c) 水凝胶的SEM图像

    Figure  4.  SEM images of surface morphology of lyophilized OSA-30wt%CMCS (a), OSA-40wt%CMCS (b) and OSA-50wt%CMCS (c) hydrogels

    图  5  OSA-40wt%CMCS水凝胶的自修复过程((a)罗丹明B染色水凝胶;(b)原始和染色水凝胶相拼接;(c)拼接水凝胶放置2 h;(d)镊子夹起自修复水凝胶;(e)测量自修复水凝胶直径;(f)拉伸自修复水凝胶)

    Figure  5.  Photographs of self-healing process of the OSA-40wt%CMCS hydrogels((a) Rhodamine B stained hydrogels; (b) Original and stained hydrogels were spliced together;(c) Spliced hydrogels was placed for 2 h; (d) Tweezers Picked up the self-healing hydrogels; (e) Measured the diameter of the self-healing hydrogels; (f) Stretched the self-healing hydrogels)

    图  6  OSA-CMCS水凝胶的黏弹性能((a)储能模量(G′)和损耗模量(G″ )随应变变化;(b) G′和G″ 随频率变化)

    Figure  6.  Viscoelastic properties of OSA-CMCS hydrogels((a) Storage modulus (G′) and loss modulus (G″ ) changed with strain; (b) G′ and G″ changed with frequency)

    图  7  OSA-CMCS水凝胶的溶胀速率曲线

    Figure  7.  Swelling rate curves of OSA-CMCS hydrogels

    图  8  OSA-CMCS水凝胶的体外降解图(PBS、37℃)

    Figure  8.  In vitro degradation of OSA-CMCS hydrogels (PBS, 37℃)

    图  9  OSA-CMCS载药凝胶的药物释放曲线

    Figure  9.  Drug release curves of gemcitabine loaded OSA-CMCS hydrogels

  • [1] CHAUDHURI O, GU L, KLUMPERS D, et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity[J]. Nature Materials,2016,15(3):326-334. doi: 10.1038/nmat4489
    [2] KIM K, BAE B, KANG Y J, et al. Natural polypeptide-based supramolecular nanogels for stable noncovalent encapsulation[J]. Biomacromolecules,2013,14(10):3515-3522. doi: 10.1021/bm400846h
    [3] ASHRAF S, PARK H K, PARK H, et al. Snapshot of phase transition in thermoresponsive hydrogel PNIPAM: Role in drug delivery and tissue engineering[J]. Macromolecular Research,2016,24(4):297-304. doi: 10.1007/s13233-016-4052-2
    [4] CHEN L, TIAN Z, DU Y. Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices[J]. Biomaterials,2004,25(17):3725-3732. doi: 10.1016/j.biomaterials.2003.09.100
    [5] SACCO P, SECHI A, TREVISAN A, et al. A silver complex of hyaluronan-lipoate (SHLS12): synthesis, characterization and biological properties[J]. Carbohydrate Polymers,2016,136:418-426. doi: 10.1016/j.carbpol.2015.09.057
    [6] MUKHERJEE D, AZAMTHULLA M, SANTHOSH S, et al. Development and characterization of chitosan-based hydrogels as wound dressing materials[J]. Journal of Drug Delivery Science and Technology,2018,46:498-510. doi: 10.1016/j.jddst.2018.06.008
    [7] SUTAR P B, MISHRA R K, PAL K, et al. Development of pH sensitive polyacrylamide grafted pectin hydrogel for controlled drug delivery system[J]. Journal of Materials Science Materials in Medicine,2008,19(6):2247-2253. doi: 10.1007/s10856-007-3162-y
    [8] ASSAF S M, ABUL-HAIJA Y M, FARES M M. Versatile pectin grafted poly (N-isopropylacrylamide); modulated targeted drug release[J]. Journal of Macromolecular Science: Part A-Chemistry,2011,48(6):493-502. doi: 10.1080/10601325.2011.573374
    [9] HAMILTON A R, SOTTOS N R, WHITE S R. Self-healing of internal damage in synthetic vascular materials[J]. Advanced Materials,2010,22(45):5159-5163. doi: 10.1002/adma.201002561
    [10] PATRICK J F, HART K R, KRULL B P, et al. Self-healing: Continuous self-healing life cycle in vascularized structural composites[J]. Advanced Materials,2014,26(25):4302-4308. doi: 10.1002/adma.201400248
    [11] 张亚玲, 杨斌, 许亮鑫, 等. 基于动态化学的自愈性水凝胶及其在生物医用材料中的应用研究展望[J]. 化学学报, 2013, 71(4):485-492. doi: 10.6023/A13010139

    ZHANG Y L, YANG B, XU L X, et al. Self-healing hydrogels based on dynamic chemistry and their bio-medical applications[J]. Acta Chimica Sinica,2013,71(4):485-492(in Chinese). doi: 10.6023/A13010139
    [12] BLAISZIKl B J, KRAMER S L B, OLUGEBEFOLA S C, et al. Self-healing polymers and composites[J]. Annual Review of Materials Research,2010,40(5):179-211.
    [13] HUSSAIN I, MIR S S, LIU S, et al. Hydroxyethyl cellulose-based self-healing hydrogels with enhanced mechanical properties via metal-ligand bond interactions[J]. European Polymer Journal,2018,100:219-227. doi: 10.1016/j.eurpolymj.2018.01.002
    [14] CAI T, HUO S, WANG T, et al. Self-healable tough supramolecular hydrogels crosslinked by poly-cyclodextrin through host-guest interaction[J]. Carbohydrate Polymers,2018,193:54-61. doi: 10.1016/j.carbpol.2018.03.039
    [15] YUAN D, HUSSAIN I, KANG M, et al. Self-recoverable and mechanical-reinforced hydrogel based on hydrophobic interaction with self-healable and conductive properties[J]. Chemical Engineering Journal,2018,353:900-910. doi: 10.1016/j.cej.2018.07.187
    [16] YUAN N, XU L, XU B, et al. Chitosan derivative-based self-healable hydrogels with enhanced mechanical properties by high-density dynamic ionic interactions[J]. Carbohydrate Polymers,2018,193:259-267. doi: 10.1016/j.carbpol.2018.03.071
    [17] DENG C C, BROOKS W L A, ABBOUD K A, et al. Boronic acid-based hydrogels undergo self-healing at neutral and acidic pH[J]. ACS Macro Letters,2015,4(2):220-224. doi: 10.1021/acsmacrolett.5b00018
    [18] CANADELL J, GOOSSENS H, KLUMPERMAN B. Self-healing materials based on disulfide links[J]. Macromolecules,2011,44(8):2536-2541. doi: 10.1021/ma2001492
    [19] SWATI S, PALLAVI J, SHACHI T. Dynamic imine bond based chitosan smart hydrogel with magnified mechanical strength for controlled drug delivery-science direct[J]. International Journal of Biological Macromolecules,2020,160:489-495. doi: 10.1016/j.ijbiomac.2020.05.221
    [20] CHAO A, NEGULESCU I, ZHANG D. Dynamic covalent polymer networks based on degenerative imine bond exchange: tuning the malleability and self-healing properties by solvent[J]. Macromolecules,2016,49(17):6277-6284. doi: 10.1021/acs.macromol.6b01443
    [21] XU C, ZHAN W, TANG X, et al. Self-healing chitosan/vanillin hydrogels based on Schiff-base bond/hydrogen bond hybrid linkages[J]. Polymer Testing,2018,66:155-163. doi: 10.1016/j.polymertesting.2018.01.016
    [22] NEAL J, MOZHDEHI D, GUAN Z. Enhancing mechanical performance of a covalent self-healing material by sacrificial non-covalent bonds[J]. Journal of the American Chemical Society,2015,137(14):4846-4850. doi: 10.1021/jacs.5b01601
    [23] LU S, GAO C, XU X, et al. Injectable and self-healing carbohydrate-based hydrogel for cell encapsulation[J]. ACS Applied Materials and Interfaces,2015,7(23):13029-13037. doi: 10.1021/acsami.5b03143
    [24] YU R, SAINT-CYR L, SOUSSAN L, et al. Anti-bacterial dynamic hydrogels prepared from O-carboxymethyl chitosan by dual imine bond crosslinking for biomedical applications[J]. International Journal of Biological Maromolecules,2020,167(5):1146-1155.
    [25] WEI Z, YANG J H, LIU Z Q, et al. Novel biocompatible polysaccharide-based self-healing hydrogel[J]. Advanced Functional Materials,2015,9(25):1352-1359.
    [26] DAS D, DAS R, GHOSH P, et al. Dextrin cross linked with poly (HEMA): A novel hydrogel for colon specific delivery of ornidazole[J]. RSC Advances,2013,3(47):25340-25350. doi: 10.1039/c3ra44716b
    [27] BACAITA S E, CIOBANU B C, POPA M, et al. Phases in temporal multiscale evolution of drug release mechanism from IPN-type chitosan based hydrogels[J]. Physical Chemistry Chemical Physics,2014,16(47):25896-25905. doi: 10.1039/C4CP03389B
    [28] 候冰娜, 李进, 倪凯, 等. 光交联羧甲基壳聚糖水凝胶的制备及药物缓释性能研究[J]. 材料工程, 2020, 11(48):76-84.

    HOU B N, LI J, NI K, et al. Preparation of photo-crosslinking carboxymethyl chitosan hydrogel for sustained drug release[J]. Journal of Materials Engineering,2020,11(48):76-84(in Chinese).
  • 加载中
图(9)
计量
  • 文章访问数:  3632
  • HTML全文浏览量:  859
  • PDF下载量:  441
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-21
  • 修回日期:  2021-04-28
  • 录用日期:  2021-05-11
  • 网络出版日期:  2021-05-18
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回