留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料压力容器含凹陷内胆屈曲的有限元分析

张国 朱海洋 蔡雅琪 任明法 李刚

张国, 朱海洋, 蔡雅琪, 等. 复合材料压力容器含凹陷内胆屈曲的有限元分析[J]. 复合材料学报, 2022, 39(3): 1343-1352. doi: 10.13801/j.cnki.fhclxb.20210518.004
引用本文: 张国, 朱海洋, 蔡雅琪, 等. 复合材料压力容器含凹陷内胆屈曲的有限元分析[J]. 复合材料学报, 2022, 39(3): 1343-1352. doi: 10.13801/j.cnki.fhclxb.20210518.004
ZHANG Guo, ZHU Haiyang, CAI Yaqi, et al. Finite element analysis of the buckling of the liner of composite pressure vessel with depression[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1343-1352. doi: 10.13801/j.cnki.fhclxb.20210518.004
Citation: ZHANG Guo, ZHU Haiyang, CAI Yaqi, et al. Finite element analysis of the buckling of the liner of composite pressure vessel with depression[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1343-1352. doi: 10.13801/j.cnki.fhclxb.20210518.004

复合材料压力容器含凹陷内胆屈曲的有限元分析

doi: 10.13801/j.cnki.fhclxb.20210518.004
基金项目: 国家自然科学基金 (U1837204);国家重点研发计划(2019YFA0706803)
详细信息
    通讯作者:

    任明法,博士,教授,研究方向为复合材料结构力学和复合材料工艺力学分析 E-mail:renmf@dlut.edu.cn

  • 中图分类号: TB331

Finite element analysis of the buckling of the liner of composite pressure vessel with depression

  • 摘要: 提出了一种复合材料压力容器含凹陷金属内胆屈曲的三维有限元分析方法。基于平面应变假设,建立了含凹陷半圆环收缩屈曲分析模型,通过修改有限元模型中内胆的节点坐标,将内胆初始凹陷引入模型中,采用非线性迭代法逐步增大面内载荷,实现了含凹陷半圆环的收缩屈曲分析。在此基础上,建立复合材料压力容器含凹陷内胆的三维有限元分析模型,同时考虑自紧工艺后内胆残余应力的环向分量与轴向分量,实现了复合材料压力容器自紧工艺后含凹陷内胆的屈曲分析。以130 L球形封头薄壁铝合金内胆全缠绕复合材料压力容器为例,分析了含凹陷内胆的临界屈曲载荷以及屈曲发生时内胆的应力及变形。结果显示,含初始缺陷的内胆在自紧工艺之后屈曲模式为局部屈曲;初始凹陷深度越大,临界屈曲载荷越低;与直筒段中部的距离为凹陷轴向宽度1/2的区域和直筒段靠近封头的金属内胆区域存在凹陷易发生屈曲,是金属内胆的薄弱环节。

     

  • 图  1  金属圆环收缩屈曲简化模型图

    Figure  1.  Simplified model of shrinkage buckling of metal ring

    R—Radius of the liner; P—Pressure

    图  2  半圆环有限元分析模型

    Figure  2.  Finite element model of the semi-circle

    图  3  含初始凹陷的半圆环有限元分析模型

    Figure  3.  Finite element model of the semi-circle with initial depression

    图  4  半圆环凹陷中心的载荷-位移曲线

    Figure  4.  Load-displacement curve in the center of the depression of the semi-circle

    图  5  半圆环结构径向位移云图

    Figure  5.  Cloud image of radial displacement of the semi-circle

    图  6  本文含凹陷内胆有限元模型计算结果与Vasilikis[13]的分析结果对比

    Figure  6.  Relationship between the buckling load and the defect amplitude corresponding to the finite element calculation results in this paper and Vasilikis[13] calculation results

    图  7  含凹陷内胆局部屈曲计算流程图

    Figure  7.  Flow chart of local buckling calculation of inner liner with depression

    图  8  压力容器有限元分析模型

    Figure  8.  Finite element model of the pressure vessel

    图  9  压力容器自紧工艺后内胆轴向、环向应力分布

    Figure  9.  Axial and circumferential stress distribution of the liner of the pressure vessel after autofrettage

    图  10  含凹陷内胆压力容器有限元模型

    Figure  10.  Finite element model of the pressure vessel with depression of the liner

    图  11  压力容器自紧后内胆径向应力分布

    Figure  11.  Radial stress distribution of liner of the pressure vessel after autofrettage

    图  12  压力容器自紧后内胆环向应力分布

    Figure  12.  Circumferential stress distribution of liner of the pressure vessel after autofrettage

    图  13  压力容器自紧后内胆等效塑性应变分布

    Figure  13.  Equivalent plastic strain distribution of liner of the pressure vessel after autofrettage

    图  14  三种凹陷深度对应的压力容器凹陷中心位置的载荷-位移曲线

    Figure  14.  Load-displacement curves of the center of the depression corresponding to the three depression depths for the pressure vessel

    图  15  三种凹陷深度对应的压力容器内胆与缠绕层之间的界面压力分布

    Figure  15.  Pressure distribution between the inner liner and the winding layer corresponding to the three depression depths for the pressure vessel

    图  16  不同凹陷轴向宽度对应的压力容器内胆临界屈曲载荷

    Figure  16.  Critical buckling load of liner corresponding to different axial widths of depressions for the pressure vessel

    Δ—Depth of the depression

    图  17  不同凹陷周向宽度对应的压力容器内胆临界屈曲载荷

    Figure  17.  Critical buckling load of liner corresponding to different circumferential direction widths of depressions for the pressure vessel

    图  18  凹陷不同位置对应的压力容器内胆临界屈曲载荷

    Figure  18.  Critical buckling load of the liner corresponding to different positions of the depression for the pressure vessel

    表  1  金属内胆材料的力学性能

    Table  1.   Mechanical properties of the metal liner material

    Young’s modulus/GPaPoisson’s ratioYield strength/MPaUltimate strength/MPa
    74 0.28 300 320
    下载: 导出CSV

    表  2  T300碳纤维/环氧树脂缠绕层的力学性能

    Table  2.   Mechanical properties of the winding T300 carbon fiber/epoxy layers

    EX/GPaEY/GPaEZ/GPaμXμYμZGXY/GPaGYZ/GPaGXZ/GPa
    135 10 10 0.32 0.32 0.32 7 5 5
    Notes: E, μ, G—Elastic modulus, Poisson’s ratio and shear modulus, respectively.
    下载: 导出CSV
  • [1] HWANG T K, PARK J B, KIM H G. Evaluation of fiber material properties in filament wound composite pressure vessels[J]. Composites Part A: Applied Science & Manufacturing,2012,43(9):1467-1475.
    [2] LEI Z, WANG J, LI S. Influence of fiber slippage coefficient distributions on the geometry and performance of compo-site pressure vessels[J]. Polymer Composites,2016,37(1):315-321. doi: 10.1002/pc.23183
    [3] HWANG T K, KIM H G. Experimental and analytical approach for the size effect on the fiber strength of CFRP[J]. Polymer Composites,2013,34(4):598-606. doi: 10.1002/pc.22461
    [4] CEN International Standard. ISO111192 Gas cylinders of composite construction specification and test methods part 2 fully wrapped fiber reinforced composite gas cylinders with load sharing metal liners[S]. Switzerland: International Organization for Standardization, 2002.
    [5] 赫晓东, 王荣国, 矫维成, 等. 先进复合材料压力容器[M]. 北京: 科学出版社, 2016: 10-16.

    HE Xiaodong, WANG Rongguo, JIAO Weicheng, et al. Advanced composite pressure vessel[M]. Beijing: Science Press, 2016: 10-16(in Chinese).
    [6] BAI H, YANG B, HUI H, et al. Experimental and numerical investigation of the strain response of the filament wound pressure vessels subjected to pressurization test[J]. Polymer Composites,2019,40(5):4427-4441.
    [7] 郑传祥. 复合材料压力容器[M]. 北京: 化学工业出版社, 2006: 26-38.

    ZHENG Chuanxiang. Composite pressure vessel[M]. Beijing: Chemical Industry Press, 2006: 26-38(in Chinese).
    [8] 孙直, 任明法, 陈浩然. 含金属内衬的复合材料缠绕薄壁容器自紧设计的工程方法[J]. 复合材料学报, 2011, 28(2):217-221.

    SUN Zhi, REN Mingfa, CHEN Haoran. An engineering algorithm of autofrettage technique for composite overwrapped pressure vessels with metal inner[J]. Acta Materiae Compositae Sinica,2011,28(2):217-221(in Chinese).
    [9] 陈亮. 碳纤维复合材料缠绕气瓶数值分析[D]. 大连: 大连理工大学, 2013.

    CHEN Liang. Numerical analysis of carbon fiber compo-site winding vessel[D]. Dalian: Dalian University of Technology, 2013(in Chinese).
    [10] HU Z H, LIU H J, WANG R G, et al. The study on buckling deformation of composite pressure vessel based on acoustic emission signals[J]. Advanced Materials Research,2009,87/88:445-450. doi: 10.4028/www.scientific.net/AMR.87-88.445
    [11] OMARA A M, GUICE L K, STRAUGHAN W T, et al. Buckling models of thin circular pipes encased in rigid cavity[J]. Journal of Engineering Mechanics,1997,123(12):1294-1301. doi: 10.1061/(ASCE)0733-9399(1997)123:12(1294)
    [12] CHICUREL R. Shrink buckling of thin circular rings[J]. Journal of Applied Mechanics,1968,35(3):608-610. doi: 10.1115/1.3601259
    [13] VASILIKIS D, KARAMANOS S. Closure to “more on mechanics of confined thin-walled cylinders subjected to external pressure”[J]. Applied Mechanics Reviews,2013,66(1):1-15.
    [14] 王荣国, 赫晓东, 胡照会, 等. 超薄金属内衬复合材料压力容器的结构分析[J]. 复合材料学报, 2010, 27(4):135-142.

    WANG Rongguo, HE Xiaodong, HU Zhaohui, et al. Structure analysis of composite pressure vessel with ultra-thin metallic liner[J]. Acta Materiae Compositae Sinica,2010,27(4):135-142(in Chinese).
    [15] 陈亮, 孙红卫, 陈国清, 等. 碳纤维缠绕复合气瓶自紧力和疲劳的数值模拟[J]. 宇航材料工艺, 2012, 42(4):16-20. doi: 10.3969/j.issn.1007-2330.2012.04.004

    CHEN Liang, SUN Hongwei, CHEN Guoqing, et al. Numerical simulation of autofrettage and fatigue of filament wound pressure vessel[J]. Aerospace Materials and Technology,2012,42(4):16-20(in Chinese). doi: 10.3969/j.issn.1007-2330.2012.04.004
    [16] SUN C, SHAW W, VINOGRADOV A M. One-way buckling of circular rings confined within a rigid boundary[J]. Journal of Pressure Vessel Technology,1995,117(2):162-169. doi: 10.1115/1.2842105
    [17] EL-SAWY K M, SWEEDAN A M I. Effect of local wavy imperfections on the elastic stability of cylindrical liners sub-jected to external uniform pressure[J]. Tunnelling and Underground Space Technology,2010,25(6):702-713. doi: 10.1016/j.tust.2010.04.002
    [18] PHOENIX S, KEZIRIAN M. Analysis of potential Ti-liner buckling after proof in kevlar/epoxy COPV[C]. California:AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dyna-mics, & Materials Conference, 2006: 1-25.
    [19] 徐坤山, 仇性启, 魏仁超. 压力容器原始制造缺陷危害性分析[J]. 机械设计与制造, 2015, 11(11):21-25. doi: 10.3969/j.issn.1001-3997.2015.11.006

    XU Kunshan, QIU Xingqi, WEI Renchao. Perniciousness analysis of original manufacturing defects in pressure vessel[J]. Machinery Design & Manufacture,2015,11(11):21-25(in Chinese). doi: 10.3969/j.issn.1001-3997.2015.11.006
    [20] 周丹. 铝内衬碳纤维全缠绕复合材料气瓶结构分析与优化设计[D]. 武汉: 武汉理工大学, 2016.

    ZHOU Dan. Structure analysis and optimized design of fully wrapped carbon-fiber reinforced aluminum lined composite gas cylinder[D]. Wuhan: Wuhan University of Technology, 2016(in Chinese).
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  1339
  • HTML全文浏览量:  684
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-17
  • 修回日期:  2021-04-27
  • 录用日期:  2021-05-09
  • 网络出版日期:  2021-05-18
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回