留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高电导率银纳米线@聚吡咯@CoNi气凝胶的制备及其电催化析氧性能

魏剑 陈甜甜 张昊 张雪萍 李嘉欣 蒋一昌

魏剑, 陈甜甜, 张昊, 等. 高电导率银纳米线@聚吡咯@CoNi气凝胶的制备及其电催化析氧性能[J]. 复合材料学报, 2022, 39(3): 1141-1151. doi: 10.13801/j.cnki.fhclxb.20210518.002
引用本文: 魏剑, 陈甜甜, 张昊, 等. 高电导率银纳米线@聚吡咯@CoNi气凝胶的制备及其电催化析氧性能[J]. 复合材料学报, 2022, 39(3): 1141-1151. doi: 10.13801/j.cnki.fhclxb.20210518.002
WEI Jian, CHEN Tiantian, ZHANG Hao, et al. Synthesis and electrocatalytic oxygen evolution performances of high conductivity silver nanowire@polypyrrole@CoNi alloy aerogels[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1141-1151. doi: 10.13801/j.cnki.fhclxb.20210518.002
Citation: WEI Jian, CHEN Tiantian, ZHANG Hao, et al. Synthesis and electrocatalytic oxygen evolution performances of high conductivity silver nanowire@polypyrrole@CoNi alloy aerogels[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1141-1151. doi: 10.13801/j.cnki.fhclxb.20210518.002

高电导率银纳米线@聚吡咯@CoNi气凝胶的制备及其电催化析氧性能

doi: 10.13801/j.cnki.fhclxb.20210518.002
基金项目: 国家自然科学基金面上项目(51578448; 51308447);陕西省自然科学基础研究计划重大基础研究项目(2017ZDJC-18);留学人员科技活动择优资助项目(陕人社函[2016]789号);陕西省教育厅科学研究计划协同创新中心项目(20JY042)
详细信息
    通讯作者:

    魏剑,博士,教授,博士生导师,研究方向为导电/纳米纤维与膜材料  E-mail:weijian@xauat.edu.cn

  • 中图分类号: TQ116.2;TQ426

Synthesis and electrocatalytic oxygen evolution performances of high conductivity silver nanowire@polypyrrole@CoNi alloy aerogels

  • 摘要: 针对传统贵金属析氧反应(OER)电催化剂的电导率较低、催化活性较差、成本高等问题,开发高效耐久、低成本且具有高暴露活性表面和优良导电性的电催化剂已迫在眉睫。通过冷冻干燥法合成银纳米线@聚吡咯(AgNWs@PPy)气凝胶,然后使用溶剂热法在AgNWs@PPy气凝胶骨架表面生长纳米CoNi合金,获得了OER电催化性能良好的AgNWs@PPy@CoNi气凝胶。结果表明,随着Co2+、Ni2+浓度的增加,AgNWs@PPy@CoNi气凝胶的催化性能先增强后减弱,当Co2+、Ni2+浓度为0.0175 mol/L制备的AgNWs@PPy@CoNi气凝胶在电流密度10 mA·cm−2时,过电位为346 mV,Tafel斜率为86.25 mV·dec−1,在恒定电压下经过10 h的稳定性测试,电流保持率达93.9%,具有良好的稳定性。三维独立型AgNWs@PPy气凝胶提供优良的导电性,CoNi合金提供丰富的活性位点,二者的共同作用表现出优异的OER催化性能,将有望替代贵金属催化剂而成为新型的OER催化材料。

     

  • 图  1  AgNWs@PPy气凝胶和AgNWs@PPy@CoNi气凝胶制备工艺示意图

    Figure  1.  Schematic illustration for the fabrication process of Ag@PPy aerogels and Ag@PPy@CoNi aerogels

    PPy—Polypyrrole; Py—Pyrrole; AgNWs—Silver nanowire

    图  2  AgNWs@PPy@CoNi气凝胶的照片:(a)挤压时;(b)压力去除后

    Figure  2.  Naked eye photos of AgNWs@PPy@CoNi aerogels: (a) compressing; (b) removing compression

    图  3  高长径比AgNWs (a)和AgNWs@PPy气凝胶(b)的SEM图像;(c) AgNWs@PPy气凝胶的TEM图像

    Figure  3.  SEM images of high aspect ratio AgNWs (a) and AgNWs@PPy aerogels (b); (c) TEM image of AgNWs@PPy aerogels

    图  4  Py浓度对AgNWs@PPy气凝胶形貌的影响

    Figure  4.  Influence of Py concentration on the morphology of AgNWs@PPy aerogels

    图  5  不同浓度AgNWs@PPy@CoNi气凝胶的SEM图像

    Figure  5.  SEM images of AgNWs@PPy@CoNi aerogels with different concentrations

    图  6  AgNWs@PPy@CoNi气凝胶的TEM图像(插图是SAED模式) (a)、HRTEM图像(b)、元素分布图像((c)~(f))和EDS能谱(g)

    Figure  6.  TEM image (inset is SAED image pattern) (a), HRTEM image (b), elemental mapping images ((c)-(f)) and EDS spectrum (g) of AgNWs@PPy@CoNi aerogels

    图  7  AgNWs@PPy@CoNi气凝胶的XRD图谱(a)和FTIR图谱(b)

    Figure  7.  XRD pattern (a) and FTIR spectrum (b) of AgNWs@PPy@CoNi aerogels

    图  8  AgNWs@PPy@CoNi气凝胶XPS图谱(a)和Ag3d (b)、Co2p (c)、Ni2p (d)的高分辨率XPS图谱

    Figure  8.  XPS survey spectrum (a) and high-resolution XPS spectra of Ag3d (b), Co2p (c), Ni2p (d) for Ag@PPy@CoNi aerogels

    图  9  AgNWs@PPy气凝胶、CoNi合金和AgNWs@PPy@CoNi气凝胶在0.1 mol/L KOH溶液中LSV图(a)和在10 mA·cm−2时OER的过电位(b)

    Figure  9.  LSV diagram (a) and OER overpotential (b) at 10 mA·cm−2 of AgNWs@PPy aerogels, CoNi alloys and AgNWs@PPy@CoNi aerogels in 0.1 mol/L KOH solution

    图  10  由LSV曲线导出的AgNWs@PPy气凝胶、CoNi合金以及AgNWs@PPy@CoNi气凝胶的Tafel斜率

    Figure  10.  Tafel slope of AgNWs@PPy aerogels, CoNi alloy and AgNWs@PPy@CoNi aerogels derived from LSV curve

    图  11  AgNWs@PPy气凝胶、CoNi合金及AgNWs@PPy@CoNi气凝胶在0.1 mol/L KOH溶液中EIS图

    Figure  11.  EIS diagram of AgNWs@PPy aerogels, CoNi allo and AgNWs@PPy@CoNi aerogels in 0.1 mol/L KOH solution

    图  12  AgNWs@PPy@CoNi气凝胶与其他Ag基电催化剂在10 mA·cm−2下的过电位和塔菲尔斜率的对比图

    Figure  12.  Comparison of overpotential and Tafel slope between AgNWs@PPy@CoNi aerogels and other Ag-based electrocatalysts at 10 mA·cm−2

    BSCF-Ag—Silver doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ; Ag-Co/FTO—Ag-doped Co3O4 nanowire arrays supported on FTO fluorine-doped tin oxide; Ag-Ci—Catalyst containing silver and carbon

    图  13  浓度为0.0175 mol/L的AgNWs@PPy@CoNi气凝胶在500圈CV前后的LSV曲线;插图为浓度0.0175 mol/L的样品在过电位为346 mV时进行10 h的稳定性实验

    Figure  13.  LSV curve of the 0.0175 mol/L AgNWs@PPy@CoNi aerogels before and after 500 cycles of CV; Inset shows that a sample with a concentration of 0.0175 mol/L was subjected to a stability experiment for 10 h at an overpotential of 346 mV

  • [1] ISLAM D A, BARMAN K, ACHARYA H, et al. Ag-nanoparticle-anchored rGO-coated MIL-88B(Fe) hybrids as robust electrocatalysts for the highly efficient oxygen evolution reaction at neutral pH[J]. ChemElectroChem,2017,4(12):3110-3118. doi: 10.1002/celc.201700883
    [2] 张淑娟, 杨婕妤, 张翊青, 等. Pd-Sn-Co纳米粒子修饰还原氧化石墨烯/CuBi2O4复合材料的制备及电催化性能[J]. 复合材料学报, 2020, 37(6):222-229.

    ZHANG Shujuan, YANG Jieshu, ZHANG Linqing, et al. Preparation and electrocatalytic properties of Pd-Sn-Co nanoparticles modified reduced graphene oxide/CuBi2O4 composites[J]. Acta Materiae Compositae Sinica,2020,37(6):222-229(in Chinese).
    [3] YU M, MOON G H, CASTILLO R G, et al. Dual role of silver moieties coupled with ordered mesoporous cobalt oxide towards electrocatalytic oxygen evolution reaction[J]. Angewandte Chemie International Edition,2020,59(38):16544-16552. doi: 10.1002/anie.202003801
    [4] KIM H, KIM Y, NOH Y, et al. Ultrathin amorphous α-Co(OH)2 nanosheets grown on Ag nanowire surfaces as a highly active and durable electrocatalyst for oxygen evolution reaction[J]. Dalton Transactions,2016:13686-13690.
    [5] TANG C, WANG H F, CHEN X, et al. Topological defects in metal-free nanocarbon for oxygen electrocatalysis[J]. Advanced Materials,2016,28(32):7030-7030. doi: 10.1002/adma.201670225
    [6] ZHANG Y, FAN X, JIAN J, et al. A general polymer-assisted strategy enables unexpected efficient metal-free oxygen-evolution catalysis on pure carbon nanotubes[J]. Energy and Environmental Science,2017,9(11):1-268.
    [7] ISABELA C M, HAI Y S, FEDERICO C V, et al. Cover picture: universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem,2011,3(7):1085-1085. doi: 10.1002/cctc.201190027
    [8] CASALONGUE H G S, NG M L, KAYA S, et al. Insitu observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction[J]. Angewandte Chemie International Edition,2014,126(28):7297-7300.
    [9] KIM J, SHIH P C, TSAO K C, et al. High-performance pyrochlore-type yttrium ruthenate electrocatalyst for oxygen evolution reaction in acidic media[J]. Journal of the American Chemical Society,2017,139(34):12076-12083. doi: 10.1021/jacs.7b06808
    [10] ROGER I, SHIPMAN M A, SYMES M D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting[J]. Nature Reviews Chemistry,2017,1(1):0003. doi: 10.1038/s41570-016-0003
    [11] ZHANG J, ZHAO Z, XIA Z, et al. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Nature Nanotechnology,2015,10(5):444-452. doi: 10.1038/nnano.2015.48
    [12] WANG B, TANG C, WANG H F, et al. A nanosized CoNi hydroxide@hydroxysulfide core-shell heterostructure for enhanced oxygen evolution[J]. Advanced Materials,2019,31(4):1805658.1-1805658.
    [13] ZHANG J, LIU J, XI L, et al. Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction[J]. Journal of the American Chemical Society,2018,140(11):3876-3879. doi: 10.1021/jacs.8b00752
    [14] CHENG C, ZHENG F, ZHANG C, et al. High-efficiency bifunctional electrocatalyst based on 3d freestanding Cu foam in situ armored CoNi alloy nanosheet arrays for overall water splitting[J]. Journal of Power Sources,2019,427(JUL. 1):184-193.
    [15] SUBBARAMAN R, TRIPKOVIC D, CHANG K, et al. Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts[J]. Nature Materials,2012,11(6):550-557. doi: 10.1038/nmat3313
    [16] ATKINSON A, BARNETT S, GORTE R J, et al. Advanced anodes for high-temperature fuel cells[J]. Nature Materials,2004,3(1):17-27. doi: 10.1038/nmat1040
    [17] ZHANG L, BAIN J A, ZHU J G, et al. Dynamic domain motion of thermal-magnetically formed marks on CoNi/Pt multilayers[J]. Journal of Applied Physics,2006,100(5):2767.
    [18] NING H G, CHEN Y, ZHANG K K, et al. Porous N-doped carbon-encapsulated CoNi alloy nanoparticles derived from MOFs as efficient bifunctional oxygen electrocatalysts[J]. ACS Applied Materials & Interfaces,2019,11(2):1957-1968. doi: 10.1021/acsami.8b13290
    [19] YAN D, LI Y, HUO J, et al. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions[J]. Advanced Materials,2017,29(48):1606459.
    [20] CHEN D, DONG C L, ZOU Y, et al. In situ evolution of highly dispersed amorphous CoOx clusters for oxygen evolution reaction[J]. Nanoscale,2017,9(33):11969-11975. doi: 10.1039/C7NR04381C
    [21] DE S, HIGGINS T M, LYONS P E, et al. Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios[J]. ACS Nano,2009,3(7):1767-1774. doi: 10.1021/nn900348c
    [22] ZHAO X, ZHANG H, YAN Y, et al. Engineering the electri-cal conductivity of lamellar silver-doped cobalt(Ⅱ) selenide nanobelts for enhanced oxygen evolution[J]. Angewandte Chemie International Edition,2017,9(33):11969-11975.
    [23] 胡金娟, 马春雨, 王佳琳, 等. Ag-Ag2O/TiO2-g-C3N4纳米复合材料的制备及可见光催化性能[J]. 复合材料学报, 2020, 37(6):181-190.

    HU Jinjuan, MA Chunyu, WANG Jialin, et al. Preparation and photocatalytic properties of Ag-Ag2O/TiO2-g-C3N4 nanocomposites[J]. Acta Materiae Compositae Sinica,2020,37(6):181-190(in Chinese).
    [24] HOU Y, LIU Y, GAO R, et al. Ag@CoxP core@shell heterogeneous nanoparticles as efficient oxygen evolution reaction catalysts[J]. ACS Catalysis,2017,7(10):7038-7042. doi: 10.1021/acscatal.7b02341
    [25] GL E Y, AYTEKIN A, KARABUDAK E, et al. Investigation of oxygen evolution reaction performance of Ag doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite structure[J]. Journal of Applied Electrochemistry,2020(7411):1037-1043.
    [26] MAKHLOUFI L, HAMMACHE H, SAIDANI B. Electrocataly-tic reduction of proton on polypyrrole coatings onto aluminium modified by the electrochemical cementation process[J]. Electrochemistry Communications,2000,2(8):552-556. doi: 10.1016/S1388-2481(00)00081-3
    [27] AGHA H, FLEURY J B, GALERNE Y. Polypyrrole coating films for nanoparticles[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects,2014,462:217-224.
    [28] HE W, LI G, ZHANG S, et al. Polypyrrole/silver coaxial nanowire aero-sponges for temperature-independent stress sensing and stress-triggered joule heating[J]. ACS Nano,2015,9(4):4244-4251. doi: 10.1021/acsnano.5b00626
    [29] YUKSEL R, ALPUGAN E, UNALAN H E. Coaxial silver nanowire/polypyrrole nanocom-posite supercapacitors[J]. Organic Electronics,2018,52:272-282. doi: 10.1016/j.orgel.2017.10.012
    [30] QIAO M T, WEI D, HE X, et al. Novel yolk-shell Fe3O4@void@SiO2@PPy nanochains toward microwave absorption application[J]. Journal of Materials Science,2021,56(2):1-16.
    [31] JITKA S, ŠKODOVá K, DUŠAN M, et al. Polypyrrole-silver composites prepared by the reduction of silver ions with polypyrrole nanotubes[J]. Polymer Chemistry,2013,4(12).
    [32] FENG X, YE Q, HOU W, et al. Ag/polypyr-role core-shell nanostructures: Interface poly-merization, characterization, and modification by gold nanoparticles[J]. The Journal of Physical Chemistry C,2007,111(24):1493-1504.
    [33] MAO H, GUO X, FU Y, et al. Efficiently improving oxygen evolution activity using hierarchical α-Co(OH)2/polypyrrole/graphene oxide nanosheets[J]. Applied Surface Science,2019,485(15):554-563.
    [34] CHENG M, WEN M, ZHOU S, et al. Solvothermal synthesis of NiCo alloy icosahedral nanocrystals[J]. Inorganic Chemistry,2012,51(3):1495-1500. doi: 10.1021/ic201763j
    [35] QIAO M, LEI X, MA Y, et al. Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material[J]. Nano Research,2018,11:1500-1519. doi: 10.1007/s12274-017-1767-0
    [36] RAFIQUE M Y, PAN L, KHAN W S, et al. Controlled synthesis, phase formation, growth mechanism, and magnetic properties of 3-D CoNi alloy microstructures composed of nanorods[J]. CrystEngComm,2013,15(26):5314-5325. doi: 10.1039/c3ce40385h
    [37] NING H H, LI G Q, CHEN Y, et al. Porous N-doped carbon encapsulated CoNi alloy nanoparticles derived from MOFs as efficient bifunctional oxygen electrocatalysts[J]. ACS Applied Materials and Interfaces,2018,11(2):1957-1968.
    [38] YAN K L, CHI J Q, LIU Z Z, et al. Coupling Ag-doping and rich oxygen vacancies in mesoporous NiCoO nanorods supported on nickel foam for highly efficient oxygen evolution[J]. Inorganic Chemistry Frontiers,2017,4(11):1783-1790.
    [39] XIAO D J, MA J, CHEN C L, et al. Oxygen-doped carbonaceous polypyrrole nanotubes-supported Ag nanoparticle as electrocatalyst for oxygen reduction reaction in alkaline solution[J]. Materials Research Bulletin,2018,105:184-191. doi: 10.1016/j.materresbull.2018.04.030
    [40] SINGU B S, YOON K R. Highly exfoliated GO-PPy-Ag ternary nanocomposite for electr-ochemical supercapacitor[J]. Electrochimica Acta,2018,268(1):304-315.
    [41] DIONIGI F, ZENG Z, SINEV I, et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution[J]. Nature Communications,2020,11(1):2522-2531. doi: 10.1038/s41467-020-16237-1
    [42] YAN K L, CHI J Q, XIE J Y, et al. Mesoporous Ag-doped Co3O4 nanowire arrays supported on FTO as efficient electrocatalysts for oxygen evolution reaction in acidic media[J]. Renewable Energy,2018,119:54-61. doi: 10.1016/j.renene.2017.12.003
    [43] LIU X W, WANG R C, GUO R, et al. Construction of alternating layered quasi-three-dimensional electrode AgNWs/CoO for water splitting: A discussion of catalytic mechanism[J]. Electrochimica Acta,2019,317(10):468-477.
    [44] ZHAO Q, YU Z, YUAN W, et al. Metal-Ci oxygen-evolving catalysts generated in situ in a mild H2O/CO2 environment[J]. International Journal of Hydrogen Energy,2013,38(13):5251-5258. doi: 10.1016/j.ijhydene.2013.02.034
    [45] HUANG X, XIE M, CHEN Y, et al. Copper-silver oxide nanowires grown on an alloy electrode as an efficient electrocatalyst for water oxidation[J]. RSC Advances,2015,5(33):26150-26156. doi: 10.1039/C5RA00820D
  • 加载中
图(13)
计量
  • 文章访问数:  1307
  • HTML全文浏览量:  487
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-16
  • 修回日期:  2021-05-07
  • 录用日期:  2021-05-08
  • 网络出版日期:  2021-05-18
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回