留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池隔膜材料EVOLi-OMMT的制备与性能

巩桂芬 邹明贵 崔巍巍 范金强 马续

巩桂芬, 邹明贵, 崔巍巍, 等. 锂离子电池隔膜材料EVOLi-OMMT的制备与性能[J]. 复合材料学报, 2022, 39(3): 1186-1193. doi: 10.13801/j.cnki.fhclxb.20210517.004
引用本文: 巩桂芬, 邹明贵, 崔巍巍, 等. 锂离子电池隔膜材料EVOLi-OMMT的制备与性能[J]. 复合材料学报, 2022, 39(3): 1186-1193. doi: 10.13801/j.cnki.fhclxb.20210517.004
GONG Guifen, ZOU Minggui, CUI Weiwei, et al. Preparation and performance of EVOLi-OMMT separator material for lithium ion battery[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1186-1193. doi: 10.13801/j.cnki.fhclxb.20210517.004
Citation: GONG Guifen, ZOU Minggui, CUI Weiwei, et al. Preparation and performance of EVOLi-OMMT separator material for lithium ion battery[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1186-1193. doi: 10.13801/j.cnki.fhclxb.20210517.004

锂离子电池隔膜材料EVOLi-OMMT的制备与性能

doi: 10.13801/j.cnki.fhclxb.20210517.004
基金项目: 国家自然科学基金 (51603057)
详细信息
    通讯作者:

    巩桂芬,博士,教授,硕士生导师,研究方向为聚合物基锂离子电池隔膜材料 E-mail:ggf-hust@163.com

  • 中图分类号: TB332; TQ340.64

Preparation and performance of EVOLi-OMMT separator material for lithium ion battery

  • 摘要: 以聚(乙烯-乙烯醇)(EVOH),锂基蒙脱土(Li-OMMT)为主要原料,先合成了一种离子型树脂,后与锂基蒙脱土复合以制备一种全新的有机-无机杂化材料EVOLi-OMMT。采用高压静电纺丝法,将其制成锂离子电池用无纺布隔膜。先用红外表征了杂化材料的键接结构,又用SEM表征了隔膜的微观结构,后将合成的两种复合隔膜与Celgard 隔膜进行了吸液率、孔隙率、热性能和电性能的对比。结果表明,EVOLi与OMMT之间生成了新的化学键,形成了插层交联结构,隔膜力学强度比EVOLi提升了68.12%,隔膜孔径均一,改性后的隔膜孔隙率和吸液率分别达457%和73%,初始温度较高,可达270℃,可耐175℃不发生皱缩;电化学测试结果表明改性过后的隔膜离子界面迁移阻抗小,可低至96.59 Ω;100次0.1 C循环以后容量保持率可达93.4%,并在循环测试中表现出优异的倍率性能。

     

  • 图  1  EVOLi-OMMT合成原理及插层示意图

    Figure  1.  Synthetic principle and schematic diagram of intercalation of EVOLi-OMMT

    LTB—Lithium tert-butoxide; 1, 3-PS—1, 3-Propane sultone; EVOH—Ethylene vinyl alcohol copolymer; OMMT—Organic montmorillonite; EVOLi—Lithium-ionized ethylene vinyl alcohol

    图  2  EVOLi和EVOLi-OMMT的FTIR图谱

    Figure  2.  FTIR spectra of EVOLi and EVOLi-OMMT

    图  3  EVOLi隔膜与EVOLi-OMMT隔膜的SEM图像:(a)纯EVOLi;(b) 3% OMMT掺杂的EVOLi

    Figure  3.  SEM images of EVOLi and EVOLi-OMMT separator: (a) Pure EVOLi; (b) 3% OMMT doped EVOLi

    图  4  Celgard 2400、EVOLi、EVOLi-OMMT隔膜的吸液率和孔隙率

    Figure  4.  Uptaken and porosity rate of Celgard 2400, EVOLi and EVOLi-OMMT separator

    图  5  Celgard 2400、EVOLi、EVOLi-OMMT隔膜的TGA曲线 (a) 和Celgard 2400、EVOLi、EVOLi-OMMT隔膜的热收缩照片 (b)

    Figure  5.  TGA curves of Celgard 2400、EVOLi、EVOLi-OMMT、separator (a) and thermal shrinkage photos of Celgard 2400, EVOLi and EVOLi-OMMT separators (b)

    图  6  Celgard 2400、EVOLi、EVOLi-OMMT隔膜的界面阻抗谱 (a) 和等效电路图 (b)

    Figure  6.  equivalent circuit diagrams of Celgard 2400, EVOLi, EVOLi-OMMT (a) and AC impedance spectroscopy (b)

    Rs—Electrolyte and electrode resistance; Cdl—Hole electrode interface electric double layer capacitance; Ret—Electron transfer resistance; CPE—Constant phase angle element; Zw—Warburg impedance during diffusion

    图  7  Celgard 2400、EVOLi和EVOLi-OMMT隔膜的循环性能曲线(a)和倍率性能曲线(b)

    Figure  7.  Cycle performance curves (a) and rate performance curves (b) of Celgard 2400, EVOLi and EVOLi-OMMT separator

    表  1  隔膜的力学性能数据

    Table  1.   Mechanics performance data of separator

    Separator nameElongation at break/%Tensile strength/MPa
    Celgard 2400 30.00 134.15
    EVOLi 42.13 2.76
    EVOLi-OMMT 38.15 4.64
    Notes: Celgard 2400—Commercial single-layer polypropylene (PP) separator; EVOLi—Lithium ionized ethylene vinyl alcohol copolymer; EVOLi-OMMT—Lithium ionized ethylene vinyl alcohol copolymer grafted with montmorillonite.
    下载: 导出CSV
  • [1] GARCIA Plaza, JEG M Carrasco, NEZ Alonso-Marti, et al. A new representation model of standard and available active materials for electrochemical batteries[J]. Journal of Renewable and Sustainable Energy,2018,10(4):44-101.
    [2] HWANG J Y, MYUNG S T, SUN Y K. Recent progress in rechargeable potassium batteries[J]. Advanced Functional Materials,2018,28(43):1802938. doi: 10.1002/adfm.201802938
    [3] 董缇, 彭鹏, 王亦伟, 等. 锂离子电池大电流放电过程模拟研究[J]. 化工学报, 2020, 71(8):3710-3721.

    DONG Ti, PENG Peng, WANG Yiwei et al. Simulation study on high current discharge process of lithium ion battery[J]. Journal of Chemical Industry,2020,71(8):3710-3721(in Chinese).
    [4] 谢松, 巩译泽, 李明浩. 锂离子电池在民用航空领域中应用的进展[J]. 电池, 2020, 50(4):388-392.

    XIE Song, GONG Yiyi, Li Minghao. Progress in the application of lithium-ion batteries in the field of civil aviation[J]. Battery,2020,50(4):388-392(in Chinese).
    [5] LI Z J, ZHONG D, ZHANG J, et al. Silicon nanoparticles/carbon composites for lithium-ion battery[J]. Progress in Chemistry,2019,31(1):201-209.
    [6] WANG X, ZHANG Y, MA L, et al. Recent development on binders for silicon-based anodes in lithium-ion batteries[J]. Acta Chimica Sinica,2019,77(1):24-40. doi: 10.6023/A18070272
    [7] HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature,2019,575(7781):75-86. doi: 10.1038/s41586-019-1682-5
    [8] HONG W, ZHANG Y, YANG L, et al. Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage[J]. Nano Energy,2019,65:104038.
    [9] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials,2010,22(3):587-603. doi: 10.1021/cm901452z
    [10] YUAN L X, WANG Z H, GOODENOUGH J B, et al. Development and challenges of LiFePO4 cathode material for lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(2): 269-284.
    [11] SAHOO S, JOANNI E, SINGH R K, et al. Recent progress in the synthesis of graphene and derived materials for next generation electrodes of high performance lithium ion batteries[J]. Progress in Energy and Combustion Science,2019,75:100786.
    [12] POMERANTSEVA E, BONACCORSO F, FENG X, et al. Energy storage: The future enabled by nanomaterials[J]. Science, 2019, 366(6468): 969.
    [13] SUN G, KONG L, LIU B, et al. Ultrahigh-strength, nonflammable and high-wettability separators based on novel polyimidecore@polybenzimidazole-sheath nanofibers for advanced and safe lithium-ion batteries[J]. Journal of Membrane Science,2019,582:132-139. doi: 10.1016/j.memsci.2019.04.005
    [14] ZENG G, ZHAO J, Feng C, et al. Flame-retardant bilayer separator with multifaceted van der waals interaction for lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2019,11(29):26402-26411.
    [15] LI L, CHEN Z, ZHANG Q, et al. A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium ion batteries[J]. Journal of Materials Chemistry A,2015,3(2):894-904. doi: 10.1039/C4TA05902F
    [16] CHENG Q, LI A, LI N, et al. Stabilizing solid electrolyte-anode interface in Li-metal batteries by boron nitride-based nanocomposite coating[J]. Joule,2019,3(6):1510-1522. doi: 10.1016/j.joule.2019.03.022
    [17] 杨富杰, 王亮, 阮文红, 等. 石墨烯基聚合物复合电解质的设计、性能及其应用研究进展[J]. 复合材料学报, 2021, 38(3):680-697.

    YANG Fujie, WANG Liang, RUAN Wenhong, et al. Research progress on design, performance and application of graphene based polymer composite electrolytes[J]. Acta Materiae Compositae Sinica,2021,38(3):680-697(in Chinese).
    [18] 赵丹妮, 田芳禺, 于雅琳, 等. 锂离子电解液/环氧乙烯基酯树脂固态电解质的制备与性能[J]. 复合材料学报, 2018, 35(2):253-259.

    ZHAO Danni, TIAN Fangyu, YU Yalin, et al. Preparation and performance of lithium ionic liquid/epoxy vinyl ester resin solid electrolyte[J]. Acta Materiae Compositae Sinica,2018,35(2):253-259(in Chinese).
    [19] JIANG L, ZHANG X, CHEN Y, et al. Modified polypropylene/cotton fiber composite nonwoven as lithium-ion battery separator[J]. Materials Chemistry and Physics,2018,219:368-375. doi: 10.1016/j.matchemphys.2018.08.035
    [20] 王郗, 宋召飞, 李旦, 等. 高安全性锂离子电池隔膜发展现状[J]. 通化师范学院学报, 2020, 41(8):51-56.

    WANG Xi, SONG Zhaofei, LI Dan, et al. The development status of high-safety lithium ion battery separator[J]. Journal of Tonghua Teachers College,2020,41(8):51-56(in Chinese).
    [21] SHEKARIAN E, NASR M R J, MOHAMMADI T, et al. Preparation of 4A zeolite coated polypropylene membrane for lithium-ion batteries separator[J]. Journal of Applied Polymer Science,2019,136(32):47841.
    [22] JIANG W, LIU Z, KONG Q, et al. A high temperature operating nanofibrous polyimide separator in Li-ion battery[J]. Solid State Ionics,2013,232:44-48. doi: 10.1016/j.ssi.2012.11.010
    [23] LUO X, LU X, CHEN X, et al. A robust flame retardant fluorinated polyimide nanofiber separator for high-temperature lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2020,8(29):14788-14798. doi: 10.1039/D0TA00439A
    [24] CHO S J, CHOI H, YOUK J H. Evaluation of PBI nanofiber membranes as a high-temperature resistance separator for lithium-ion batteries[J]. Fibers and Polymers,2020,21(5):993-998. doi: 10.1007/s12221-020-9955-z
    [25] HAO X, ZHU J, JIANG X, et al. Ultrastrong Polyoxyzole nanofiber membranes for dendrite-proof and heat-resistant battery separators[J]. Nano Letters,2016,16(5):2981-2987. doi: 10.1021/acs.nanolett.5b05133
    [26] 陈连周, 蹇锡高. 新型多芳环取代杂萘联苯型聚芳醚酮的合成[J]. 化学通报, 1998(12):3-5.

    CHEN Lianzhou, JIAN Xigao. Synthesis of a new type of polyaromatic ring substituted poly(phthalazinone biphenyl) polyaryl ether ketone[J]. Chemistry Bulletin,1998(12):3-5(in Chinese).
    [27] LIU J C, QIN J X, MO Y D, et al. Polyphenylene sulfide separator for high safety lithium-ion batteries[J]. Journal of the Electrochemical Society,2019,166(8):A1644-A1652. doi: 10.1149/2.1041908jes
    [28] CHO J H, CHO S Y, JIN, H J, et al. Cellulose nanocrystal-enhanced poly(vinyl alcohol-co-ethylene) barrier film[J]. Textile Science and Engineering,2017,54(6):421-428.
    [29] 巩桂芬, 徐阿文, 邹明贵, 等. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5):75-82.

    GONG Guifen, XU Awen, ZOU Minggui, et. al. Preparation and electrochemical performance of EVOH-SO3Li/P(VDF-HFP)/HAP lithium ion battery separator[J]. Materials Engineering,2020,48(5):75-82(in Chinese).
    [30] DANEV R, BUIJSSE B, KHOSHOUEI M, et al. Volta potential phase plate for in-focus phase contrast transmission electron microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(44):15635-15640. doi: 10.1073/pnas.1418377111
    [31] 王锦成, 杨科, 郑晓昱. 蒙脱土的有机化改性及其结构与性能研究[J]. 化工矿物与加工, 2010, 39(7):11-13. doi: 10.3969/j.issn.1008-7524.2010.07.004

    WANG Jincheng, YANG Ke, ZHENG Xiaoyu. Study on organic modification of montmorillonite and its structure and properties[J]. Industrial Minerals and Processing,2010,39(7):11-13(in Chinese). doi: 10.3969/j.issn.1008-7524.2010.07.004
    [32] LI J, YU J, WANG Y, et al. Intercalated montmorillonite reinforced polyimide separator prepared by solution blow spinning for lithium-ion batteries[J]. Industrial & Engineering Chemistry Research,2020,59(28):12879-12888.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1096
  • HTML全文浏览量:  520
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-19
  • 修回日期:  2021-04-26
  • 录用日期:  2021-05-08
  • 网络出版日期:  2021-05-18
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回