留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PEDOT: PSS/聚(丙烯酰胺-甲基丙烯酸)导电水凝胶的制备与性能

孙富昌 潘雨辰 张云飞 刘辉 杜飞鹏

孙富昌, 潘雨辰, 张云飞, 等. PEDOT: PSS/聚(丙烯酰胺-甲基丙烯酸)导电水凝胶的制备与性能[J]. 复合材料学报, 2022, 39(3): 1131-1140. doi: 10.13801/j.cnki.fhclxb.20210517.003
引用本文: 孙富昌, 潘雨辰, 张云飞, 等. PEDOT: PSS/聚(丙烯酰胺-甲基丙烯酸)导电水凝胶的制备与性能[J]. 复合材料学报, 2022, 39(3): 1131-1140. doi: 10.13801/j.cnki.fhclxb.20210517.003
SUN Fuchang, PAN Yuchen, ZHANG Yunfei, et al. Preparation and properties of PEDOT:PSS/poly(acrylamide-co-methacrylic acid) conductive hydrogels[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1131-1140. doi: 10.13801/j.cnki.fhclxb.20210517.003
Citation: SUN Fuchang, PAN Yuchen, ZHANG Yunfei, et al. Preparation and properties of PEDOT:PSS/poly(acrylamide-co-methacrylic acid) conductive hydrogels[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1131-1140. doi: 10.13801/j.cnki.fhclxb.20210517.003

PEDOT: PSS/聚(丙烯酰胺-甲基丙烯酸)导电水凝胶的制备与性能

doi: 10.13801/j.cnki.fhclxb.20210517.003
基金项目: 国家自然科学基金青年项目(51803157);武汉工程大学大学生校长基金(XZJJ2020060)
详细信息
    通讯作者:

    张云飞,博士,副教授,硕士生导师,研究方向为功能复合材料的制备与应用  E-mail:zyf3006@126.com

  • 中图分类号: TB332; TQ427.2

Preparation and properties of PEDOT:PSS/poly(acrylamide-co-methacrylic acid) conductive hydrogels

  • 摘要: 通过原位自由基溶液聚合法制备了聚(3, 4-乙撑二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)/聚(丙烯酰胺-甲基丙烯酸)(P(AAM-MAA))导电水凝胶。采用FTIR、Raman、TGA和SEM分别表征了PEDOT:PSS/P(AAM-MAA)的组成与形貌,测定了PEDOT:PSS/P(AAM-MAA)的透光率、电导率、拉伸性能、力敏性能及传感性能。结果表明:PEDOT:PSS均匀地分散在P(AAM-MAA)水凝胶体系中,使PEDOT:PSS/P(AAM-MAA)具有较好的电导率和透明性(>50%),MAA的引入既提升了PEDOT:PSS/P(AAM-MAA)的电导率,也改善了其拉伸性能和力敏性能。当导电水凝胶中MAA的含量从0wt%增加到2.52wt%时,PEDOT: PSS/P(AAM-MAA)的电导率从0.043 S·m−1增加到0.060 S·m−1,其拉伸强度、断裂伸长率分别从46 kPa、76%增长到68 kPa、129%。PEDOT:PSS/P(AAM-MAA)也表现出良好的线性灵敏度(R2>0.983)(应变:0%~70%)。电阻变化曲线表明制备的水凝胶可作为传感器通过电阻信号变化来监测人体的各种微小运动。

     

  • 图  1  导电水凝胶制备示意图 (a)、纯聚丙烯酰胺水凝胶(PAM)和PEDOT:PSS/P(AAM-MAA)2样品的照片 (b) 和PEDOT:PSS/P(AAM-MAA)水凝胶在可见光波长范围内的透过率 (c)

    Figure  1.  Schematic of preparation of conductive hydrogels (a), photographs of sample polyacrylamide (PAM) and PEDOT:PSS/P(AAM-MAA)2 (b) andtransmittance of PEDOT:PSS/P(AAM-MAA) hydrogels within visible light wavelength range (c)

    图  2  PAM与PEDOT:PSS/P(AAM-MAA)的FTIR图谱 (a)、拉曼光谱图 (b) 和热重曲线 (c)

    Figure  2.  FTIR spectra (a), Raman spectra (b) and TG curves (c) of PAM and PEDOT:PSS/P(AAM-MAA)

    图  3  PAM (a)、PEDOT:PSS/P(AAM-MAA)0 (b)、PEDOT:PSS/P(AAM-MAA)1 (c) 及PEDOT:PSS/P(AAM-MAA)3 (d) 的FE-SEM图像

    Figure  3.  FE-SEM images of PAM (a), PEDOT:PSS/P(AAM-MAA)0 (b), PEDOT:PSS/P(AAM-MAA)1 (c) and PEDOT:PSS/P(AAM-MAA)3 (d)

    图  4  MAA用量对PEDOT:PSS/P(AAM-MAA)水凝胶电导率 (a) 及阻抗性能 (b) 的影响

    Figure  4.  Effect of amount of MAA on the electrical conductivity (a) and impedance performance (b) of PEDOT:PSS/P(AAM-MAA) hydrogels

    图  5  MAA用量对PEDOT:PSS/P(AAM-MAA)水凝胶拉伸性能的影响

    Figure  5.  Effect of amount of MAA on the tensile properties of PEDOT:PSS/P(AAM-MAA) hydrogels

    图  6  PEDOT:PSS/P(AAM-MAA)水凝胶的相对电阻变化-应变曲线

    Figure  6.  Relative resistance variation-strain curves of PEDOT:PSS/P(AAM-MAA) hydrogels

    图  7  PEDOT:PSS/P(AAM-MAA)2水凝胶用于监测人体手指(0°~30°) (a)、手腕(0°~45°) (b) 的弯曲运动和反复拉伸应变(0%~50%) (c) 时的电阻变化

    Figure  7.  Resistance change of PEDOT:PSS/P(AAM-MAA)2 hydrogel in the detection of cyclic finger bending (0°-30°) (a), wrist bending (0°-45°) (b) and tensile strain (0%-50%) (c)

    表  1  聚(3, 4-乙撑二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)/聚(丙烯酰胺-甲基丙烯酸)(P(AAM-MAA))单体转化率及其相关数据

    Table  1.   Monomer conversion rate and related datas of poly(3, 4-ethyle-nedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/poly(acrylamide-co-methacrylic acid) (P(AAM-MAA))

    SampleMass fraction of MAA/wt%m1/gm2/gα/%
    PAM 0 0.179 0.167 93.30
    PEDOT:PSS/P(AAM-MAA)0 0 0.142 0.129 90.85
    PEDOT:PSS/P(AAM-MAA)1 0.64 0.163 0.145 88.96
    PEDOT:PSS/P(AAM-MAA)2 1.28 0.158 0.137 86.71
    PEDOT:PSS/P(AAM-MAA)3 2.52 0.156 0.135 86.54
    Notes: PAM—Polyacrylamide; m1—Total weight of monomer; m2—Mass of freeze-dried hydrogel sample; α—Monomer conversion rate.
    下载: 导出CSV
  • [1] 朱韵伊, 彭伟, 林泽慧, 等. MXene基水凝胶复合材料的研究进展[J]. 复合材料学报, 2021, 38(7):2010-2024.

    ZHU Yunyi, PENG Wei, LIN Zehui, et al. Research progress of MXene-based hydrogel composites[J]. Acta Materiae Compositae Sinica,2021,38(7):2010-2024(in Chinese).
    [2] CAI G F, WANG J X, QIAN K, et al. Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection[J]. Advanced Science,2017,4(2):1600190. doi: 10.1002/advs.201600190
    [3] JEONG H T, DU J F, KIM Y R, et al. Electrochemical performances of highly stretchable polyurethane (PU) supercapacitors based on nanocarbon materials composites[J]. Journal of Alloys and Compounds,2019,777:59-64. doi: 10.1016/j.jallcom.2018.10.047
    [4] WANG C, HU K, ZHAO C C, et al. Customization of conductive elastomer based on PVA/PEI for stretchable sensors[J]. Small,2020,16:1904758. doi: 10.1002/smll.201904758
    [5] 佘小红, 杜娟, 朱雯莉. 高强度聚苯胺-聚丙烯酸/聚丙烯酰胺导电水凝胶的制备与性能[J]. 复合材料学报, 2021, 38(4):1223-1230.

    SHE Xiaohong, DU Juan, ZHU Wenli. Preparation and properties of strong PANI-PAA/PAM conductive hydrogel[J]. Acta Materiae Compositae Sinica,2021,38(4):1223-1230(in Chinese).
    [6] SUN X, QIN Z H, YE L, et al. Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness[J]. Chemical Engineering Journal,2020,382:122832. doi: 10.1016/j.cej.2019.122832
    [7] CAI Y T, QIN J B, LI W M, et al. A stretchable, conformable, and biocompatible graphene strain sensor based on a structured hydrogel for clinical application[J]. Journal of Materials Chemistry A,2019,7(47):27099-27109. doi: 10.1039/C9TA11084D
    [8] YOUSSEF A M, HASANIN M S, ABD EL-AZIZ M E, et al. Conducting chitosan/hydroxylethyl cellulose/polyaniline bionanocomposites hydrogel based on graphene oxide doped with Ag-NPs[J]. International Journal of Biological Macromolecules,2021,167:1435-1444. doi: 10.1016/j.ijbiomac.2020.11.097
    [9] LI Y Q, ZHANG H, NI S Z, et al. In situ synthesis of conductive nanocrystal cellulose/polypyrrole composite hydrogel based on semi-interpenetrating network[J]. Materials Letters,2018,232:175-178. doi: 10.1016/j.matlet.2018.08.115
    [10] ZHOU Q Q, TENG W L, JIN Y H, et al. Highly-conductive PEDOT: PSS hydrogel framework based hybrid fiber with high volumetric capacitance and excellent rate capability[J]. Electrochimica Acta,2020,334:135530. doi: 10.1016/j.electacta.2019.135530
    [11] YANG Y, DENG H, FU Q. Recent progress on PEDOT: PSS based polymer blends and composites for flexible electronics and thermoelectric devices[J]. Materials Chemistry Frontiers,2020,4:3130-3152. doi: 10.1039/D0QM00308E
    [12] SHI H, LIU C C, JIANG Q L, et al. Effective approaches to improve the electrical conductivity of PEDOT: PSS: A review[J]. Advanced Electronic Materials,2015,1:1500017. doi: 10.1002/aelm.201500017
    [13] OUYANG J Y. “Secondary doping” methods to significantly enhance the conductivity of PEDOT: PSS for its application as transparent electrode of optoelectronic devices[J]. Displays,2013,34(5):423-436. doi: 10.1016/j.displa.2013.08.007
    [14] ZHANG H, YUE M Q, WANG T T, et al. Conductive hydrogel-based flexible strain sneors with superior chemical stability and stretchability for mechanical sensing in corrosive solvents[J]. New Journal of Chemistry,2021,45:4647-4657. doi: 10.1039/D0NJ05880G
    [15] CAO S, TONG X, DAI K, et al. A super-stretchable and tough functionalized boron nitride/PEDOT: PSS/poly(N-isopropylacrylamide) hydrogel with self-healing, adhesion, conductive and photothermal activity[J]. Journal of Materials Chemistry A,2019,7:8204-8209. doi: 10.1039/C9TA00618D
    [16] 陈裙凤, 刘茜, 杨嘉玮, 等. 纤维素离子凝胶的制备及性能研究[J]. 复合材料学报, 2021, 38(12):4247-4254.

    CHEN Qunfeng, LIU Xi, YANG Jiawei, et al. Cellulose-base ionic gel with high performance[J]. Acta Materiae Compositae Sinica,2021,38(12):4247-4254(in Chinese).
    [17] WU Q, WEI J J, XU B, et al. A robust, highly stretchable supramolecular polymer conductive hydrogel with self-healability and thermo-processability[J]. Scientific Reports,2017,7:41566. doi: 10.1038/srep41566
    [18] SUN N N, JI R, ZHANG F F, et al. Structural evolution in poly(acrylic-co-acrylamide) pH-responsive hydrogels by low-field NMR[J]. Materials Today Communications,2020,22:100748. doi: 10.1016/j.mtcomm.2019.100748
    [19] WEI C C, XU Z Q, HAN F H, et al. Preparation and characterization of poly(acrylic acid-co-acrylamide)/montmorillonite composite and its application for methylene blue adsorption[J]. Colloid and Polymer Science,2018,296(4):653-667. doi: 10.1007/s00396-018-4277-z
    [20] KISHI R, KUBOTA K, MIURA T, et al. Mechanically tough double-network hydrogels with high electronic conductivity[J]. Journal of Materials Chemistry C,2014,2(4):736-743. doi: 10.1039/C3TC31999G
    [21] DU G L, GAO G R, HOU R X, et al. Tough and fatigue resistant biomimetic hydrogels of interlaced self-assembled conjugated polymer belts with a polyelectrolyte network[J]. Chemistry of Materials,2014,26(11):3522-3529. doi: 10.1021/cm501095s
    [22] WANG Y L, HAO J, HUANG Z Q, et al. Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring[J]. Carbon,2018,126:360-371. doi: 10.1016/j.carbon.2017.10.034
    [23] ZHANG Y F, GUO M M, ZHANG Y, et al. Flexible, stretchable and conductive PVA/PEDOT: PSS composite hydrogels prepared by SIPN strategy[J]. Polymer Testing,2020,81:106213. doi: 10.1016/j.polymertesting.2019.106213
    [24] LEE J H, JEONG Y R, LEE G, et al. Highly conductive, stretchable, and transparent PEDOT: PSS electrodes fabricated with triblock copolymer additives and acid treatment[J]. ACS Applied Materials & Interfaces,2018,10(33):28027-28035.
    [25] TANPICHAI S, OKSMAN K. Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: Mechanical properties and creep recovery[J]. Composites Part A: Applied Science and Manufacturing,2016,88:226-233. doi: 10.1016/j.compositesa.2016.06.002
    [26] CAI N, LI C, LUO X G, et al. A strategy for improving mechanical properties of composite nanofibers through surface functionalization of fillers with hyperbranched polyglycerol[J]. Journal of Materials Science,2016,51(2):797-808. doi: 10.1007/s10853-015-9403-4
    [27] LIU C X, LI M D, LU B S, et al. High-sensitivity crack-based flexible strain sensor with dual hydrogen bond-assisted structure for monitoring tiny human motions and writing behavior[J]. Organic Electronics,2021,88:105977. doi: 10.1016/j.orgel.2020.105977
    [28] CHOI D Y, KIM M H, OH Y S, et al. Highly stretchable, hysteresis-free ionic liquid-based strain sensor for precise human motion monitoring[J]. ACS Applied Materials & Interfaces,2017,9(2):1770-1780.
    [29] SEYEDIN M Z, RAZAL J M, INNIS P C, et al. Strain-responsive polyurethane/PEDOT: PSS elastomeric composite fibers with high electrical conductivity[J]. Advanced Functional Materials,2014,24(20):2957-2966. doi: 10.1002/adfm.201303905
    [30] 张明艳, 杨振华, 吴子剑, 等. 新型三明治结构聚二甲基硅氧烷/聚偏氟乙烯-纳米Ag线/聚二甲基硅氧烷柔性应变传感器的制备与性能[J]. 复合材料学报, 2020, 37(5):1024-1032.

    ZHANG Mingyan, YANG Zhenhua, WU Zijian, et al. Preparation and properties of a novel sandwich structure polydimethylsiloxane/polyvinylidene fluoride-Ag nanowires/polydimethylsiloxane flexible strain sensor[J]. Acta Materiae Compositae Sinica,2020,37(5):1024-1032(in Chinese).
    [31] WU H G, LIU Q, CHEN H W, et al. Fibrous strain sensor with ultra-sensitivity, wide sensing range, and large linearity for full-range detection of human motion[J]. Nanoscale,2018,10(37):17512-1751. doi: 10.1039/C8NR05404E
    [32] YE F M, LI M, KE D N, et al. Ultrafast self-healing and injectable conductive hydrogel for strain and pressure sensors[J]. Advance materials technology,2019,4(9):1900346.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  2619
  • HTML全文浏览量:  1775
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-23
  • 修回日期:  2021-04-26
  • 录用日期:  2021-05-10
  • 网络出版日期:  2021-05-17
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回