留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚丙烯纤维灌浆料及其钢筋套筒连接受力性能试验研究

陈萌 赵伦 李攀杰 许世展 张普 郭辉 于吉星

陈萌, 赵伦, 李攀杰, 等. 聚丙烯纤维灌浆料及其钢筋套筒连接受力性能试验研究[J]. 复合材料学报, 2022, 39(2): 685-694. doi: 10.13801/j.cnki.fhclxb.20210517.002
引用本文: 陈萌, 赵伦, 李攀杰, 等. 聚丙烯纤维灌浆料及其钢筋套筒连接受力性能试验研究[J]. 复合材料学报, 2022, 39(2): 685-694. doi: 10.13801/j.cnki.fhclxb.20210517.002
CHEN Meng, ZHAO Lun, LI Panjie, et al. Experimental study on mechanical properties of polypropylene fiber grouting material and its rebar sleeve connection[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 685-694. doi: 10.13801/j.cnki.fhclxb.20210517.002
Citation: CHEN Meng, ZHAO Lun, LI Panjie, et al. Experimental study on mechanical properties of polypropylene fiber grouting material and its rebar sleeve connection[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 685-694. doi: 10.13801/j.cnki.fhclxb.20210517.002

聚丙烯纤维灌浆料及其钢筋套筒连接受力性能试验研究

doi: 10.13801/j.cnki.fhclxb.20210517.002
基金项目: 国家自然科学基金-河南省联合基金(U1904177)
详细信息
    通讯作者:

    张普,博士,副教授,博士生导师,研究方向为高性能纤维增强聚合物复合材料及其结构、超高性能混凝土及其结构应用、3D打印智能建造与工程结构无损检测 E-mail: zhp1243@163.com

  • 中图分类号: TU525

Experimental study on mechanical properties of polypropylene fiber grouting material and its rebar sleeve connection

  • 摘要: 为改善装配式结构节点的力学连接性能,对聚丙烯(PP)纤维灌浆料进行材性性能及其钢筋套筒连接接头的力学性能研究。选用不同掺量、长度PP纤维的灌浆料进行力学性能试验,确定PP纤维最佳掺量(占普通(JZ)灌浆料的体积比)和长度分别为0.5%和9 mm。以JZ灌浆料为对照组,设置了4d、6d、8d(d为钢筋直径)3种锚固长度的套筒接头试件并进行单向拉伸试验,采用光纤光栅传感器(FBG)和应变片两种测试方法研究PP纤维灌浆料下的粘结应力分布。结果表明:PP纤维增强灌浆料钢筋套筒的最小锚固长度在6d以上;PP纤维能够有效改善接头韧性,增强了套筒的粘结锚固效果,提高了筋粘结应力分布均匀程度,使其呈“马鞍形”或“斜梯型”分布;FBG传感器与应变片所得结果基本一致,FBG传感器所采集的应变数据精度高于应变片。

     

  • 图  1  套筒构造及参数示意图

    Figure  1.  Schematic diagram of sleeve structure and parameters

    图  2  应变片和光纤光栅传感器(FBG)布置示意图

    Figure  2.  Layout schematic diagram of strain gauges and fiber Bragg Grating (FBG) sensors

    图  3  位移计布置及试验装置

    Figure  3.  Displacement gauge arrangement and test setup

    图  4  PP纤维长度和掺量对灌浆料流动度的影响规律

    Figure  4.  Effect of length and dosage parameters of PP fiber on fluidity of grouting material

    图  5  PP纤维长度和掺量对灌浆料抗压强度的影响规律

    Figure  5.  Effect of length and dosage parameters of PP fiber on compressive strength of grouting material

    图  6  PP纤维长度和掺量对灌浆料抗折强度的影响规律

    Figure  6.  Effect of length and dosage parameters of PP fiber on flexural strength of grouting material

    图  7  钢筋灌浆套筒连接破坏形式

    Figure  7.  Failure mode of steel bar reinforced sleeve connection specimens

    图  8  灌浆料套筒接头试件荷载-位移关系曲线

    Figure  8.  Load-displacement curves of grouting material rebar sleeve connection specimens

    图  9  不同分级载荷下应变片测试灌浆料套筒接头试件的钢筋应力分布:(a) Y-JZ-8d; (b) Y-JZ-6d; (c) Y-JZ-4d; (d) Y-(0.5%PP9mm)/JZ-8d; (e) Y-(0.5%PP9mm)/JZ-6d; (f) Y-(0.5%PP9mm)/JZ-4d

    Figure  9.  Stress distribution of reinforcing steel bar in grout sleeve joint specimen measured by strain gauge under different step loads:(a) Y-JZ-8d; (b) Y-JZ-6d; (c) Y-JZ-4d; (d) Y-(0.5%PP9mm)/JZ-8d; (e) Y-(0.5%PP9mm)/JZ-6d; (f) Y-(0.5%PP9mm)/JZ-4d

    图  10  不同分级载荷下FBG测试灌浆料套筒接头试件的钢筋应力分布:(a) F-JZ-8d; (b) F-JZ-6d; (c) F-JZ-4d; (d) F-(0.5%PP9mm)/JZ-8d; (e) F-(0.5%PP9mm)/JZ-6d; (f) F-(0.5%PP9mm)/JZ-4d

    Figure  10.  Stress distribution of reinforcing steel bar in grout sleeve joint specimen measured by FBG under different step loads: (a) F-JZ-8d; (b) F-JZ-6d; (c) F-JZ-4d; (d) F-(0.5%PP9mm)/JZ-8d; (e) F-(0.5%PP9mm)/JZ-6d; (f) F-(0.5%PP9mm)/JZ-4d

    图  11  不同分级载荷下应变片测试灌浆料套筒接头试件的钢筋粘结应力分布:(a) Y-JZ-8d; (b) Y-JZ-6d; (c) Y-JZ-4d; (d) Y-(0.5%PP9mm)/JZ-8d; (e) Y-(0.5%PP9mm)/JZ-6d; (f) Y-(0.5%PP9mm)/JZ-4d

    Figure  11.  Bond stress distribution of reinforcing steel bar in grout sleeve joint specimen measured by strain gauge under different step loads:(a) Y-JZ-8d; (b) Y-JZ-6d; (c) Y-JZ-4d; (d) Y-(0.5%PP9mm)/JZ-8d; (e) Y-(0.5%PP9mm)/JZ-6d; (f) Y-(0.5%PP9mm)/JZ-4d

    图  12  不同分级载荷下FBG测试灌浆料套筒接头试件的钢筋粘结应力分布:(a) F-JZ-8d; (b) F-JZ-6d; (c) F-JZ-4d; (d) F-(0.5%PP9mm)/JZ-8d; (e) F-(0.5%PP9mm)/JZ-6d; (f) F-(0.5%PP9mm)/JZ-4d

    Figure  12.  Bond stress distribution of reinforcing steel bar in grout sleeve joint specimen measured by FBG under different step loads:(a) F-JZ-8d; (b) F-JZ-6d; (c) F-JZ-4d; (d) F-(0.5%PP9mm)/JZ-8d; (e) F-(0.5%PP9mm)/JZ-6d; (f) F-(0.5%PP9mm)/JZ-4d

    表  1  聚丙烯(PP)纤维参数

    Table  1.   Parameters of polypropylene (PP) fiber

    Density/(g·cm−3)Diameter/μmCompressive strength/MPaYoung’s modulus/MPaElongation at break/%
    0.91 27 556 4186 18
    下载: 导出CSV

    表  2  普通(JZ)灌浆料的力学性能试验结果

    Table  2.   Main mechanical test results of ordinary (JZ) grouting materials

    SpecimenFluidity/mmCompressive strength/MPaFlexural strength/MPa
    Initial30 min
    JZ 390 382 74 13.8
    下载: 导出CSV

    表  3  灌浆料套筒接头试件单向拉伸力学性能及破坏模式

    Table  3.   Uniaxial tensile mechanical properties and failure mode of grouting material rebar sleeve connection specimens

    Specimen$ {P}_{\rm{y}} $/kN$ {P}_{\rm{u}}/ $kN$ {\tau }_{\rm{max}} $/MPa$ {S}_{\rm{q}} $/mmFailure mode
    Y-JZ-8d 114.1 163.1 >20.04 20.09 Bar fracture
    Y-JZ-6d 113.8 157.4 25.79 14.13 Bar pull-out
    Y-JZ-4d 113.1 132.5 32.56 2.77 Bar pull-out
    Y-(0.5%PP9mm)/JZ-8d 113.8 163.3 >20.06 23.71 Bar fracture
    Y-(0.5%PP9mm)/JZ-6d 113.8 161.9 26.52 17.40 Bar pull-out
    Y-(0.5%PP9mm)/JZ-4d 113.9 134.5 33.05 2.67 Bar pull-out
    F-JZ-8d 114.0 163.2 >20.03 23.57 Bar fracture
    F-JZ-6d 113.2 162.6 25.69 15.46 Bar pull-out
    F-JZ-4d 114.0 127.8 31.40 2.71 Bar pull-out
    F-(0.5%PP9mm)/JZ-8d 113.6 163.7 >20.07 23.70 Bar fracture
    F-(0.5%PP9mm)/JZ-6d 113.6 166.8 26.64 18.24 Bar pull-out
    F-(0.5%PP9mm)/JZ-4d 114.9 128.3 33.05 2.08 Bar pull-out
    Notes: Y and F—Strain gauge and FBG; JZ and PP—JZ and PP grouting material;8d—Anchorage length is 8d. $ {P}_{\rm{y}} $ and $ {P}_{\rm{u}} $—Yield load and ultimate force. $ {\tau }_{\rm{max}} $—Ultimate bond strength, in the case of bar pull-out, it is the bond strength corresponding to the maximum tensile load; in the case of bar fracture, it must be greater than this value. $ {S}_{\rm{q}} $—Ultimate bond strength whose length from the starting point of strengthening to the point of ultimate tensile strength.
    下载: 导出CSV
  • [1] MARTINEZ S, JARDON A, NAVARRO J M, et al. Building industrialization: Robotized assembly of modular products[J]. Assembly Automation,2008,28(2):134-142.
    [2] YEE A A. Prestressing concrete for buildings[J]. Pci Journal,1976,21(5):112-157. doi: 10.15554/pcij.09011976.112-157
    [3] 韩超, 郑毅敏, 赵勇. 钢筋套筒灌浆连接技术研究与应用进展[J]. 施工技术, 2013, 42(21):113-116. doi: 10.7672/sgjs2013210113

    HAN Chao, ZHENG Yimin, ZHAO Yong. Research and application development of grout sleeve splicing for reinforcement[J]. Construction Technology,2013,42(21):113-116(in Chinese). doi: 10.7672/sgjs2013210113
    [4] ALLAN M L, KUKACKA L E. Strength and durability of polypropylene fibre reinforced grouts[J]. Cement and Concrete Research,1995,25(3):511-521. doi: 10.1016/0008-8846(95)00040-J
    [5] 冯虎, 陈风波, 李经业. 聚丙烯纤维灌浆材料的技术与应用分析[J]. 山东交通科技, 2014(3):33-35.

    FENG Hu, CHEN Fengbo, LI Jingye. Technology and application analysis of grouting material admixed with polypropylene fiber[J]. Shandong Jiaotong Keji,2014(3):33-35(in Chinese).
    [6] 梁影. 聚丙烯纤维水泥浆板底灌浆材料性能研究[D]. 重庆: 重庆交通大学, 2014.

    LIANG Ying. Research on the performance of polypropylene fiber cement material for pavement grouting[D]. Chongqing: Chongqing Jiaotong University. 2014(in Chinese).
    [7] 郑永峰. GDPS灌浆套筒钢筋连接技术研究[D]. 南京: 东南大学, 2016.

    ZHENG Yongfeng. Research on rebar splicing system By GDPS grout-filled coupling sleeve[D]. Nanjing: Southeast University, 2016(in Chinese).
    [8] 余琼, 孙佳秋, 袁炜航. 带肋钢筋与套筒约束灌浆料黏结性能试验[J]. 哈尔滨工业大学学报, 2018, 50(12):98-106. doi: 10.11918/j.issn.0367-6234.201711108

    YU Qiong, SUN Jiaqiu, YUAN Weihang. Experimental Study on bond behavior between ribbed steel bars and sleeve constrained grouting material[J]. Journal of Harbin Institute of Technology,2018,50(12):98-106(in Chinese). doi: 10.11918/j.issn.0367-6234.201711108
    [9] LING J H, RAHMAN A B A, IBRAHIM I S, et al. Tensile capacity of grouted splice sleeves[J]. Engineering Structures,2016,111:285-296. doi: 10.1016/j.engstruct.2015.12.023
    [10] HOSSEINI S J A, RAHMAN A B A. Analysis of spiral reinforcement in grouted pipe splice connectors[J]. Gradevinar,2013,65(6):537-546.
    [11] ALIAS A, ZUBIR M A, SHAHID K A, et al. Structural performance of grouted sleeve connectors with and without transverse reinforcement for precast concrete structure[J]. Procedia Engineering,2013,53:116-123. doi: 10.1016/j.proeng.2013.02.017
    [12] KOUSHFAR K, RAHMAN A, AHMAD Y, et al. Bond behavior of the reinforcement bar in glass fiber-reinforced polymer connector[J]. Gradevinar,2014,66(4):301-310.
    [13] SEO S Y, NAM B R, KIM S K. Tensile strength of the grout-filled head-splice-sleeve[J]. Construction and Building Materials,2016,124:155-166. doi: 10.1016/j.conbuildmat.2016.07.028
    [14] XU Tengfei, LI Quanwen, ZHAO Renda, et al. On the early-age bond-slip behavior of an eccentric bar embedded in a grouted sleeve[J]. Engineering Structures,2019,190:160-170. doi: 10.1016/j.engstruct.2019.04.020
    [15] 中国建筑标准设计研究院. 钢筋连接用套筒灌浆料: JG/T 408—2019[S]. 北京: 中国标准出版社, 2019.

    China Architecture Design & Research Group. Cementitious grout for sleeve of rebar splicing: JG/T 408—2019[S]. Beijing: Standards Press of China, 2019(in Chinese).
    [16] 中国建筑科学研究院. 钢筋套筒灌浆连接应用技术规程: JGJ 355—2015[S]. 北京: 中国建筑工业出版社, 2015.

    China Academy of Building Research. Technical specification for grout sleeve of rebars: JGJ 355—2015[S]. Beijing: China Architecture & Building Press, 2015(in Chinese).
    [17] 中华人民共和国住房和城乡建设部. 水泥基灌浆材料应用技术规范: GB/T 50448—2015[S]. 北京: 中国建筑工业出版社, 2015.

    Ministry of Housing and Urban Rural Development of the People’s Republic of China. Technical code for application of cementitious grout: GB/T 50448—2015[S]. Beijing: China Architecture &Building Press, 2015(in Chinese).
    [18] 中国国家标准化管理委员会. 水泥胶砂强度检验方法: GB/T 17671—1999[S]. 北京: 中国标准出版社, 1999.

    Standardization Administration. Method of testing cements-Determination of strength: GB/T 17671—1999[S]. Beijing: China Standard Press, 1999(in Chinese).
    [19] 中国建筑科学研究院. 钢筋机械连接技术规程: JGJ 107—2016[S]. 北京: 中国建筑工业出版社, 2016.

    China Academy of Building Research. Technical specification for mechanical splicing of steel reinforcing bars: JGJ 107—2016[S]. Beijing: China Architecture & Building Press, 2016(in Chinese).
    [20] LUBLINER J, OLIVER J, OLLER S, et al. A plastic-damage model for concrete[J]. International Journal of Solids & Structures,1989,25(3):299-326.
    [21] WU J Y, LI J, RUI F. An energy release rate-based plastic-damage model for concrete[J]. International Journal of Solids & Structures,2006,43(3-4):583-612.
    [22] 郭乃胜, 赵颖华, 孙略伦. 纤维掺量对聚酯纤维沥青混凝土韧性的影响[J]. 交通运输工程学报, 2006(4):32-35. doi: 10.3321/j.issn:1671-1637.2006.04.008

    GUO Naisheng, ZHAO Yinghua, SUN Luelun. Effect of fiber contents on toughness of polyester fiber asphalt concrete[J]. Journal of Traffic and Transportation Engineering,2006(4):32-35(in Chinese). doi: 10.3321/j.issn:1671-1637.2006.04.008
    [23] 许成顺, 刘洪涛, 杜修力. 高应力反复拉压作用下钢筋套筒灌浆连接性能试验研究[J]. 建筑结构学报, 2018, 39(12):178-184, 193.

    XU Chengshun, LIU Hongtao, DU Xiuli. Experimental study on connection performance of grouted sleeve splicing for rebars under high stress repeated tension-compression loading[J]. Journal of Building Structures,2018,39(12):178-184, 193(in Chinese).
    [24] 武立伟. 矿用钢管混凝土套筒灌浆连接性能试验研究[D]. 唐山: 华北理工大学, 2018.

    WU Liwei. Experimental study on sleeve connection performance of mine concrete filled steel tube[D]. Tangshan: North China University of Science and Technology, 2018(in Chinese).
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  895
  • HTML全文浏览量:  403
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-25
  • 修回日期:  2021-05-06
  • 录用日期:  2021-05-07
  • 网络出版日期:  2021-05-18
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回