留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乳酸基聚苯胺柔性可降解超级电容器的制备与性能

韦会鸽 李桂星 万同 陈安利 彭紫芳 张欢

韦会鸽, 李桂星, 万同, 等. 聚乳酸基聚苯胺柔性可降解超级电容器的制备与性能[J]. 复合材料学报, 2022, 39(1): 193-202. doi: 10.13801/j.cnki.fhclxb.20210517.001
引用本文: 韦会鸽, 李桂星, 万同, 等. 聚乳酸基聚苯胺柔性可降解超级电容器的制备与性能[J]. 复合材料学报, 2022, 39(1): 193-202. doi: 10.13801/j.cnki.fhclxb.20210517.001
WEI Huige, LI Guixing, WAN Tong, et al. Polyaniline growing on polylactic acid substrate towards flexible and biodegradable supercapacitors[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 193-202. doi: 10.13801/j.cnki.fhclxb.20210517.001
Citation: WEI Huige, LI Guixing, WAN Tong, et al. Polyaniline growing on polylactic acid substrate towards flexible and biodegradable supercapacitors[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 193-202. doi: 10.13801/j.cnki.fhclxb.20210517.001

聚乳酸基聚苯胺柔性可降解超级电容器的制备与性能

doi: 10.13801/j.cnki.fhclxb.20210517.001
基金项目: 天津市教委科研计划项目(2017KDYB16)
详细信息
    通讯作者:

    韦会鸽,博士,副教授,博士生导师,研究方向为智能高分子复合材料及器件 E-mail: huigewei@tust.edu.cn

  • 中图分类号: TB324;TM53

Polyaniline growing on polylactic acid substrate towards flexible and biodegradable supercapacitors

  • 摘要: 随着全球经济的快速发展、化石燃料的枯竭及环境污染等问题的加剧,社会对新型的电化学储能技术的需求日趋迫切。近年来,超级电容器由于其高的功率密度、长的循环寿命、宽的工作温度、优异的稳定性等优势引起了广泛关注。但由于传统的电容器器件大而重、制造过程繁复、且大多数不能够降解,已经不能满足社会的可持续发展需要,因此制备一种新型柔性、环保的超级电容器迫在眉睫。本工作报道了以聚乳酸(PLA)薄膜为基底,在PLA表面原位化学聚合生长聚苯胺(PANI) 制备聚苯胺-聚乳酸(PANI-PLA)可降解柔性超级电容器电极。采用SEM、FTIR、UV-Vis对电极进行形貌及结构的表征;继而对其电化学性能进行测试。测试结果显示,在三电极体系下,PANI-PLA的最大面积比电容可达到5.00 mF·cm −2(@0.10 mA·cm −2)。在二电极体系下以聚乙烯醇/硫酸(PVA/H 2SO 4)作为凝胶电解质时,PANI-PLA//PANI-PLA对称固态超级电容器面积比电容为0.20 mF·cm −2,功率密度为3.60 μW·cm −2,对应的能量密度为0.02 μW·h·cm −2(@0.004 mA·cm −2);聚苯胺-不锈钢(PANI-SS)//PANI-PLA不对称固态超级电容器面积比电容为23.33 mF·cm −2,功率密度为30.09 μW·cm −2,对应的能量密度为1.17 μW·h·cm −2(@0.05 mA·cm −2)。

     

  • 图  1  PANI-PLA电极的制备示意图

    Figure  1.  Schematic preparation of PANI-PLA electrode

    PLA—Polylactic acid; APS—Ammonium persulfate; PA—Phytic acid; TSA—Para-toluene sulfonate; PANI-PLA—Polyaniline-polylactic acid; AN—Aniline

    图  2  PANI-PLA的SEM图像(放大倍数40000倍) (a)、PANI-PLA SEM图像(放大倍数80000倍) (b)以及PANI-PLA液氮淬断截面SEM图像(c)

    Figure  2.  SEM images at lower magnitude (×40000) (a) and higher magnitude (×80000) (b) and cross-sectional image (c)

    图  3  PANI-PLA的UV-Vis图谱 (a);PANI-PLA、PANI、PLA的FTIR图谱 (b);PANI-PLA、PANI、PLA的拉曼谱图 (c)

    Figure  3.  UV-Vis spectrum of PANI-PLA (a);FTIR spectra of PANI-PLA, PANI and PLA (b);Raman spectra of PANI-PLA, PANI and PLA (c)

    图  4 

    图  4  PLA与PANI-PLA的CV曲线 (a)、不同掺杂酸制备得到电极的CV曲线 (b)、不同浓度APS下制备得到电极的CV曲线 (c)及1 mol/L H 2SO 4、0.3 mol/L APS制备得到电极的CV曲线 (d)

    Figure  4.  CV curves of PLA and PANI-PLA (a), CV curves of PANI-PLA electrodes doped with different acids (b), CV curves of PANI-PLA electrodes using different concentrations of APS (c) and CV curve of PANI-PLA using 1 mol/L H 2SO 4, 0.3 mol/L APS (d)

    图  5  PANI-PLA电极的CV曲线 (a)、GCD曲线 (b)、EIS曲线 (c) 及循环稳定性 (@0.3 mA·cm −2) (d)

    Figure  5.  CV curves (a), GCD curves (b), EIS curve (c), and cycling stability (@ 0.3 mA·cm −2) of PANI-PLA electrode (d)

    图  6  PANI-PLA//PANI-PLA对称固态超级电容器的结构

    Figure  6.  Schematic structure of symmetric PANI-PLA//PANI-PLA solid supercapacitor

    PLA—Polylactic acid; PANI—Polyaniline; PVA—Poly vinyl alcohol.

    图  7  PANI-PLA//PANI-PLA对称固态超级电容器的CV曲线 (a)、GCD曲线 (b)、EIS曲线 (c) 及循环稳定性 (@0.02 mA·cm −2) (d)

    Figure  7.  CV curves (a), GCD curves (b), EIS curve (c), and cycling stability (@ 0.02 mA·cm −2) of symmetric PANI-PLA//PANI-PLA solid supercapacitor (d)

    图  8 

    图  8  PANI-SS//PANI-PLA不对称固态超级电容器的CV曲线 (a)、GCD曲线 (b)、EIS曲线 (c) 及循环稳定性 (@0.3 mA·cm −2) (d)

    Figure  8.  CV curves (a), GCD curves (b), EIS curve (c) and cycling stability (@ 0.3 mA·cm −2) of asymmetric PANI-SS//PANI-PLA solid supercapacitor (d)

    表  1  不同薄膜超级电容器的电化学性能对比

    Table  1.   Comparison of PANI-SS//PANI-PLA with previously reported supercapacitors

    Solid supercapacitor Substrate Preparation method Areal capacitance/
    (mF·cm −2)
    Energy density/
    (μW·h·cm −2)
    Power density/
    (μW·cm −2)
    Reference
    PANI-SS//PANI-PLA(asymmetric) PLA &SS In situ polymerization 23.33 1.17 30.09 This work
    Ni 3(HITP) 2//PEDOT:PSS(asymmetric) ITO coated PET Air/liquid interface method 1.06 0.12 1.35 [ 18]
    TI 3C 2T x //SWCNT(asymmetric) PET Spin-casting 1.60 0.05 [ 29]
    PEDOT//Ti 3C 2T x (asymmetric) Glass/PET Electrochemical deposition 2.40 [ 30]
    CQDs//GO(symmetric) Paper Inkjet printing 4.20 [ 31]
    Notes: PANI-SS//PANI-PLA—Polyaniline-poly lactic acid//polyaniline-stainless steel; Ni 3 (HITP) 2//PEDOT:PSS—Ni 3(HITP) 2//poly(3,4-ethylenedioxythiophene): poly (styrenesulfonate; TI 3C 2T x //SWCNT—TI 3C 2T x //Single-walled carbon nanotubes; PEDOT//Ti 3C 2T x (Poly(3,4-ethylenedioxythiophene)//Ti 3C 2T x ; CQDs//GO—Carbon quantum dots//graphene oxide.
    下载: 导出CSV
  • [1] ZHU C, YANG P, CHAO D, et al. All metal nitrides solid-state asymmetric supercapacitors[J]. Advanced Materials,2015,27(31):4566-4571. doi: 10.1002/adma.201501838
    [2] ZHANG Y Z, WANG Y, CHENG T, et al. Printed supercapacitors: Materials, printing and applications[J]. Chemical Society Reviewes,2019,48(12):3229-3264. doi: 10.1039/C7CS00819H
    [3] ZANG X, ZHANG R, ZHEN Z, et al. Flexible, temperature-tolerant supercapacitor based on hybrid carbon film electrodes[J]. Nano Energy,2017,40:224-232. doi: 10.1016/j.nanoen.2017.08.026
    [4] LEE G, KANG S K, WON S M, et al. Fully biodegradable microsupercapacitor for power storage in transient electronics[J]. Advanced Energy Materials,2017,7(18):1700157. doi: 10.1002/aenm.201700157
    [5] DAI M Z, ZHAO D P, WU X. Research progress on transition metal oxide based electrode materials for asymmetric hybrid capacitors[J]. Chinese Chemical Letters,2020,31(9):2177-2188. doi: 10.1016/j.cclet.2020.02.017
    [6] 王玖, 吴南石, 刘涛, 等. 用于超级电容器的锰钴氧化物/碳纤维材料(英文)[J]. 物理化学学报, 2020, 36(7):37-45.

    WANG Jiu, WU Nanshi, LIU Tao, et al. MnCo oxides supported on carbon fibers for high-performance supercapacitors[J]. Acta Physico-Chimica Sinica,2020,36(7):37-45(in Chinese).
    [7] 谢亚桥, 赵佳欣, 李杰兰, 等. 氯化钠模板诱导木质素基多孔炭的制备及其超级电容器性能[J]. 应用化学, 2019, 36(4):482-488.

    XIE Yaqiao, ZHAO Jiaxin, LI Jielan, et al. Synthesis of sodium chloride induced lignin-based porous carbon and their supercapacitor performances[J]. Chinese Journal of Applied Chemistry,2019,36(4):482-488(in Chinese).
    [8] 王宪朋, 刘阳, 王传栋, 等. 静电纺丝法制备小口径胶原-聚乳酸人工血管[J]. 复合材料学报, 2017, 34(11):2550-2555.

    WANG Xianpeng, LIU Yang, WANG Chuandong, et al. Preparation of small-diameter collagen-polylactic acid artificial blood vessel by electrospinning[J]. Acta Materiae Compositae Sinica,2017,34(11):2550-2555(in Chinese).
    [9] WANG Q, DU P, LIU J, et al. Facile strategy for mass production of polymer-supported film electrodes for high performance flexible symmetric solid-state supercapacitors[J]. Applied Surface Science,2019,487:295-303. doi: 10.1016/j.apsusc.2019.05.093
    [10] WANG Q, WANG H, DU P, et al. Porous polylactic acid/carbon nanotubes/polyaniline composite film as flexible free-standing electrode for supercapacitors[J]. Electrochimica Acta,2019,294:312-24. doi: 10.1016/j.electacta.2018.10.108
    [11] 王登武, 王芳. 聚苯胺复合材料研究进展[J]. 中国塑料, 2014, 28(11):7-11.

    WANG Dengwu, WANG Fang. Research progress of polyaniline composites[J]. China Plastics,2014,28(11):7-11(in Chinese).
    [12] 张悦, 汪广进, 孙爽, 等. 纳米结构聚苯胺及聚苯胺纳米复合材料的研究进展[J]. 材料导报, 2014, 28(3):56-59.

    ZHANG Yue, WANG Guangjin, SUN Shuang, et al. Research progress of nanostructure polyaniline and polyaniline nanocomposites[J]. Materials Reports,2014,28(3):56-59(in Chinese).
    [13] 刘连梅, 赵健伟, 陈超. 聚苯胺-石墨烯/聚酰亚胺复合导电纱的制备及其超电容特性[J]. 复合材料学报, 2020, 37(4):786-793.

    LIU Lianmei, ZHAO Jianwei, CHEN Chao. Preparation and supercapacitance characteristics of polyaniline-graphene/polyimide composite conductive yarn[J]. Acta Materiae Compositae Sinica,2020,37(4):786-793(in Chinese).
    [14] 张政, 刘洪达, 宋朝霞, 等. 聚苯胺包覆CoFe类普鲁士蓝复合材料的超电容性能[J]. 复合材料学报, 2020, 37(3):731-739.

    ZHANG Zheng, LIU Hongda, SONG Zhaoxia, et al. Supercapacitive performance of polyaniline coated CoFe prussian blue analogue composite[J]. Acta Materiae Compositae Sinica,2020,37(3):731-739(in Chinese).
    [15] 侯朝霞, 赵蓝蔚. 三维多级孔石墨烯/聚苯胺复合材料的制备及电化学性能[J]. 复合材料学报, 2019, 36(7):1591-1600.

    HOU Zhaoxia, ZHAO Lanwei. Preparation and electrochemical performance of 3D hierarchical porous graphene/polyaniline composites[J]. Acta Materiae Compositae Sinica,2019,36(7):1591-1600(in Chinese).
    [16] 朱英, 万梅香, 江雷. 聚苯胺微/纳米结构及其应用[J]. 高分子通报, 2011(10):15-32.

    ZHU Ying, WAN Meixiang, JIANG Lei. Self-asseblied polyaniline micro/nanostructures and their applications[J]. Polymer Bulletin,2011(10):15-32(in Chinese).
    [17] 徐浩, 延卫, 冯江涛. 聚苯胺的合成与聚合机理研究进展[J]. 化工进展, 2008(10):1561-1568. doi: 10.3321/j.issn:1000-6613.2008.10.014

    XU Hao, YAN Wei, FENG Jiangtao. Development of synthesis and polymerization mechanism of polyaniline[J]. Chemical Industry and Engineering Progress,2008(10):1561-1568(in Chinese). doi: 10.3321/j.issn:1000-6613.2008.10.014
    [18] ZHAO W, CHEN T, WANG W, et al. Conductive Ni 3(HITP) 2 MOFs thin films for flexible transparent supercapacitors with high rate capability[J]. Science Bulletin,2020,65(21):1803-1811. doi: 10.1016/j.scib.2020.06.027
    [19] YU P, LI Y, YU X, et al. Polyaniline nanowire arrays aligned on nitrogen-doped carbon fabric for high-performance flexible supercapacitors[J]. Langmuir,2013,29(38):12051-12058. doi: 10.1021/la402404a
    [20] 罗云清, 董要, 张静怡, 等. 纳米纤维形貌聚苯胺的制备与表征[J]. 东北师大学报(自然科学版), 2014, 46(2):74-77.

    LUO Yunqing, DONG Yao, ZHANG Jingyi, et al. Synthesis and characterization of polyaniline nanofibers[J]. Northeast Namal University (Natural Science Edition),2014,46(2):74-77(in Chinese).
    [21] 黄艳仙, 叶成濠. 反相微乳法合成纳米级硫酸掺杂聚苯胺及其吸附性能的研究[J]. 化学与生物工程, 2017, 34(12):43-48. doi: 10.3969/j.issn.1672-5425.2017.12.011

    HUANG Yanxian, YE Chenghao. Synthesis of nanoscaled sulfuric acid doped polyaniline by reverse microemulsion Method and its adsorption propety[J]. Chemtry Bioengineering,2017,34(12):43-48(in Chinese). doi: 10.3969/j.issn.1672-5425.2017.12.011
    [22] 聂凤明, 朱锐钿, 张鹏, 等. PLA/PCL共混物的红外光谱和拉曼光谱分析[J]. 合成树脂及塑料, 2015, 32(1):59-62. doi: 10.3969/j.issn.1002-1396.2015.01.017

    NIE Fengming, ZHU Ruitian, ZHANG Peng, et al. Infrared and Raman spectra analysis of PLA/PCL blend[J]. China Synthetic Resin and Plastics,2015,32(1):59-62(in Chinese). doi: 10.3969/j.issn.1002-1396.2015.01.017
    [23] 曹慧, 庞智, 高肖汉, 等. 有机酸掺杂聚苯胺的研究进展[J]. 化工进展, 2016, 35(10):3226-3235.

    CAO Hui, PANG Zhi, GAO Xiaohan, et al. Research progress of organic acids doped polyaniline[J]. Chemical Industry and Engineering Progress,2016,35(10):3226-3235(in Chinese).
    [24] 高云芳, 应婕, 徐新, 等. 不同酸掺杂聚苯胺炭化产物的制备及其电化学性能[J]. 高校化学工程学报, 2019, 33(1):193-198. doi: 10.3969/j.issn.1003-9015.2019.01.026

    GAO Yunfang, YING Jie, XU Xin, et al. Preparation of carbonized products of acid doped polyaniline and their electrochemical properties[J]. Journal of Chemical Engineering of Chinese Universities,2019,33(1):193-198(in Chinese). doi: 10.3969/j.issn.1003-9015.2019.01.026
    [25] WEI H, WANG H, LI A, et al. Advanced porous hierarchical activated carbon derived from agricultural wastes toward high performance supercapacitors[J]. Journal of Alloys and Compounds,2020,820:153111. doi: 10.1016/j.jallcom.2019.153111
    [26] WEI H, YAN X, LI Y, et al. Hybrid electrochromic fluorescent poly(DNTD)/CdSe@ZnS composite films[J]. The Journal of Physical Chemistry C,2012,116(7):4500-4510. doi: 10.1021/jp2117906
    [27] LIU F, LUO S, LIU D, et al. Facile processing of free-standing polyaniline/SWCNT film as an integrated electrode for flexible supercapacitor application[J]. ACS Applied Materials Interfaces,2017,9(39):33791-33801. doi: 10.1021/acsami.7b08382
    [28] ZHAO D, GUO X, GAO Y, et al. An electrochemical capacitor electrode based on porous carbon spheres hybrided with polyaniline and nanoscale ruthenium oxide[J]. ACS Applied Materials Interfaces,2012,4(10):5583-5589. doi: 10.1021/am301484s
    [29] ZHANG C J, ANASORI B, SERAL-ASCASO A, et al. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance[J]. Advanced Materials,2017,29(36):1702678. doi: 10.1002/adma.201702678
    [30] LI J, LEVITT A, KURRA N, et al. MXene-conducting polymer electrochromic microsupercapacitors[J]. Energy Storage Materials,2019,20:455-461. doi: 10.1016/j.ensm.2019.04.028
    [31] LIU J, YE J, PAN F, et al. Solid-state yet flexible supercapacitors made by inkjet-printing hybrid ink of carbon quantum dots/graphene oxide platelets on paper[J]. Science China Materials,2018,62(4):545-554.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1047
  • HTML全文浏览量:  467
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-27
  • 修回日期:  2021-04-14
  • 录用日期:  2021-05-09
  • 网络出版日期:  2021-05-17
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回