留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨鳞片-碳纤维协同增强铜基复合材料的制备与热物理性能

黄焌晨 缪国栋 陈友明 欧云 郭世柏 刘骞

黄焌晨, 缪国栋, 陈友明, 等. 石墨鳞片-碳纤维协同增强铜基复合材料的制备与热物理性能[J]. 复合材料学报, 2022, 39(2): 759-768. doi: 10.13801/j.cnki.fhclxb.20210513.006
引用本文: 黄焌晨, 缪国栋, 陈友明, 等. 石墨鳞片-碳纤维协同增强铜基复合材料的制备与热物理性能[J]. 复合材料学报, 2022, 39(2): 759-768. doi: 10.13801/j.cnki.fhclxb.20210513.006
HUANG Junchen, MIAO Guodong, CHEN Youming, et al. Preparation and thermophysical properties of graphite flake-carbon fiber co-reinforced copper matrix composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 759-768. doi: 10.13801/j.cnki.fhclxb.20210513.006
Citation: HUANG Junchen, MIAO Guodong, CHEN Youming, et al. Preparation and thermophysical properties of graphite flake-carbon fiber co-reinforced copper matrix composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 759-768. doi: 10.13801/j.cnki.fhclxb.20210513.006

石墨鳞片-碳纤维协同增强铜基复合材料的制备与热物理性能

doi: 10.13801/j.cnki.fhclxb.20210513.006
基金项目: 国家自然科学基金(51704113)
详细信息
    通讯作者:

    刘骞,博士,副教授,硕士生导师,研究方向为金属基复合材料、高导热电子封装材料 E-mail:liuq@hnust.edu.cn

  • 中图分类号: TB3333

Preparation and thermophysical properties of graphite flake-carbon fiber co-reinforced copper matrix composites

  • 摘要: 采用真空热压技术制备了石墨鳞片-碳纤维协同增强铜基复合材料,研究了碳纤维含量对复合材料的组织结构、抗弯强度与热导率的影响。结果表明,石墨鳞片-碳纤维/铜基复合材料界面结合良好;当碳纤维体积分数为0.5vol%~1.5vol%时,碳纤维能够均匀分散在基体中,并有效提升复合材料的抗弯强度。当碳纤维体积分数为1.5vol%时,抗弯强度达到最大值126 MPa,相比未添加碳纤维的复合材料提高了46%;但过量加入碳纤维(2vol%及以上)时,碳纤维出现团聚,使抗弯强度下降。碳纤维的加入会使复合材料的热导率小幅下降,复合材料的热导率从549 W/(m·K)降低到527 W/(m·K)。使用声子失配模型(Acoustic mismatch model,AMM)结合Digimat软件的MF模块对多相复合材料的热导率进行有效预测。

     

  • 图  1  原材料的SEM表征微观形貌

    Figure  1.  Microscopic morphologies of raw materials

    图  2  样品的性能测试示意图

    Figure  2.  Schematic diagram of performance test of the sample

    图  3  不同体积分数碳纤维的石墨鳞片-碳纤维协同增强铜基复合材料微观形貌和微观形貌取样示意图

    Figure  3.  Micromorphologies of copper-matrix composites reinforced by graphite flake and carbon fiber with different volume fractions of carbon fiber and schematic diagram of microscopic morphology sampling

    图  4  石墨鳞片-碳纤维协同增强铜基复合材料的XRD图谱 (a) 及放大图 (b)

    Figure  4.  XRD pattern of copper-matrix composites reinforced by graphite flake and carbon fiber (a) and enlarge figure (b)

    图  5  石墨鳞片-碳纤维协同增强铜基复合材料界面处SEM图像及C、Cu、Ti元素分布图

    Figure  5.  SEM image of the interface of graphite-carbon fiber reinforced copper-matrix composites and the distribution of C, Cu and Ti elements

    图  6  石墨鳞片-碳纤维协同增强铜基复合材料中纤维含量对抗弯强度的影响

    Figure  6.  Influence of fiber content on bending strength of copper-matrix composites reinforced by graphite-carbon fiber synergism

    图  7  石墨鳞片-碳纤维协同增强铜基复合材料中纤维含量对热导率的影响

    Figure  7.  Effect of fiber content on thermal conductivity of graphite-carbon fiber co-reinforced copper matrix composites

    表  1  样品各组分的含量

    Table  1.   Content of each component of the sample

    SampleCu/
    vol%
    Ti/
    vol%
    Graphite
    flake/vol%
    Carbon
    fiber/vol%
    0vol%fiber 48 2 50.0 0
    0.5vol%fiber 48 2 49.5 0.5
    1vol%fiber 48 2 49.0 1.0
    1.5vol%fiber 48 2 48.5 1.5
    2vol%fiber 48 2 48.0 2.0
    下载: 导出CSV

    表  2  AMM模型理论计算时使用的参数[25-30]

    Table  2.   Parameters used in theoretical calculation of AMM model[25-30]

    PhaseDensity/
    (kg·m−3)
    Thermal conductivity/
    (W(m·K)−1)
    Specific heat/
    (J·kg−1·K−1)
    Phonon velocity/
    (m·s−1)
    Cu 8960 390 385 2500 Transversal
    4910 Longitudinal
    TiC 4930 36.4 562 6977
    Graphite flake 2260 1000 Transversal
    10 Longitudinal
    710 22160 Longitudinal
    14660 Transversal
    4140 Out-plane
    Fiber 1800 150 Longitudinal
    10 Transversal
    710 22160 Longitudinal
    14660 Transversal
    4140 Out-plane
    下载: 导出CSV
  • [1] 张晓辉, 王强. 电子封装用金属基复合材料的研究现状[J]. 微纳米电子技术, 2018, 55(1):18-25, 44.

    ZHANG X H, WANG Q. Research status of metal matrix composites for electronic packaging[J]. Micronanoelectronic Technology,2018,55(1):18-25, 44(in Chinese).
    [2] 刘猛, 李顺, 白书欣, 等. SiCP/Cu电子封装材料研究进展[J]. 材料导报, 2013, 27(19):130-134.

    LIU M, LI S, BAI S X, et al. Progress in SiCp/Cu electronic packaging materials[J]. Materials Review,2013,27(19):130-134(in Chinese).
    [3] 申胜飞, 李茜. 5G通信技术关键材料发展研究[J]. 科技中国, 2019(8):50-59.

    SHEN S F, LI Q. Research on key materials development of 5G communication technology[J]. Science and Technology of China,2019(8):50-59(in Chinese).
    [4] MALLIK S, EKERE N, BEST C, et al. Investigation of thermal management materials for automotive electronic control units[J]. Applied Thermal Engineering,2011,31(2):355-362.
    [5] 王俊伟, 张现周, 薛晨, 等. 石墨表面镀Si对石墨/Al复合材料热物理性能的影响[J]. 复合材料学报, 2017, 34(4):608-615.

    WANG J W, ZHANG X Z, XUE C, et al. Effects of Si coated on graphite surface on the thermal and mechanical properties of graphite/Al composites[J]. Acta Materiae Compo-sitae Sinica,2017,34(4):608-615(in Chinese).
    [6] LIU Q, ZHANG C, CHEN J, et al. Modeling of interfacial design and thermal conductivity in graphite flake/Cu composites for thermal management applications[J]. Applied Thermal Engineering,2019,156:351-358. doi: 10.1016/j.applthermaleng.2019.04.063
    [7] SOHN Y, HAN T, HAN J H. Effects of shape and alignment of reinforcing graphite phases on the thermal conductivity and the coefficient of thermal expansion of graphite/copper composites[J]. Carbon,2019,149:152-164.
    [8] LIU B, ZHANG D Q, LI X, et al. Effect of graphite flakes particle sizes on the microstructure and properties of graphite flakes/copper composites[J]. Journal of Alloys and Compounds,2018,766:S0925838818322503.
    [9] LIU Q, HE X B, REN S B, et al. Thermophy-sical properties and microstructure of graphite flake/copper composites processed by electroless copper coating[J]. Journal of Alloys & Compounds,2014,587:255-259.
    [10] BAI H, XUE C, LYU J L, et al. Thermal conductivity and mechanical properties of flake grap-hite/copper composite with a boron carbide-boron nano-layer on graphite surface[J]. Composites Part A: Applied Science and Manufacturing,2017:S1359835X17304256.
    [11] REN S B, HONG Q, CHEN J, et al. The influence of matrix alloy on the microstructure and properties of (flake graphite+diamond)/Cu composites by hot pressing[J]. Journal of Alloys & Compounds,2015,652:351-357.
    [12] ZHU Y, BAI H, XUE C, et al. Thermal conductivity and mechanical properties of a flake graphite/Cu composite with a silicon nano-layer on a graphite surface[J]. RSC Advances,2016,6(100):98190-98196. doi: 10.1039/C6RA17804A
    [13] ZHANG R, HE X, LIU Q, et al. Improvement in mechanical and thermal properties of graphite flake/Cu composites by introducing TiC coating on graphite flake surface[J]. Metals-Open Access Metallurgy Journal,2019,9(5):519.
    [14] 王晗. 多相协同增强铜基复合材料的制备与强化机理研究[D]. 秦皇岛: 燕山大学, 2020.

    WANG H. Study on preparation and strengthening mechanism of multiphase cooperatively reinforced copper matrix composites[D]. Qinhuangdao: Yanshan University, 2020(in Chinese).
    [15] 陈达, 赵炜康, 武世文, 等. 纤维长度对碳纤维/铜基复合材料组织及力学性能的影响[J]. 矿冶工程, 2017, 37(6):105-108+112.

    CHEN D, ZHAO W K, WU S W, et al. Effects of carbon fiber length on microstructures and mechanical properties of carbon fibers/Cu composite[J]. Mining and Metallurgical Engineering,2017,37(6):105-108+112(in Chinese).
    [16] 刘建秀, 宋阳, 樊江磊, 等. 碳纤维增强铜基复合材料研究进展[J]. 材料科学与工程学报, 2018, 36(2):173, 175-179.

    LIU J X, SONG Y, FAN J L, et al. Research progress of carbon fiber reinforced copper matrix composites[J]. Journal of Materials Science& Engineering,2018,36(2):173, 175-179(in Chinese).
    [17] LIU L, TANG Y, ZHAO H, et al. Fabrication and properties of short carbon fibers reinforced copper matrix composites[J]. Journal of Materials Science,2008,43(3):974-979. doi: 10.1007/s10853-007-2089-5
    [18] CUI Q, CHEN C, YU C, et al. Effect of molybdenum particles on thermal and mechanical properties of graphite flake/copper composites[J]. Carbon,2020,161:169-180. doi: 10.1016/j.carbon.2020.01.059
    [19] 陈文革, 王娇娇, 马佳, 等. 镀铬碳纤维增强铜基复合材料的组织与性能[J]. 兵器材料科学与工程, 2017, 40(2):42-47.

    CHEN W G, WANG J J, MA Jia, et al. Microstructure and properties of Cr-coated carbon fiber-reinforced copper matrix composites[J]. Ordnance Material Science and Engineering,2017,40(2):42-47(in Chinese).
    [20] LIANG Y H, WANG H Y, YANG Y F, et al. Evolution process of the synthesis of TiC in the Cu-Ti-C system[J]. Journal of Alloys & Compounds,2008,452(2):298-303.
    [21] ZHANG R, HE X, CHEN Z, et al. Influence of Ti content on the microstructure and properties of graphite flake/Cu-Ti composites fabricated by vacuum hot pressing[J]. Vacuum,2017,141:265-271. doi: 10.1016/j.vacuum.2017.04.026
    [22] XIONGN, BAO R, YI J, et al. CNTs/Cu-Ti composites fabrication through the synergistic reinforcement of CNTs and in situ generated nanoTiC particles[J]. Journal of Alloys& Compounds,2018:S092583881832989X.
    [23] 曾凡坤, 马洪兵, 江南. 高定向石墨/铜复合材料的制备和热物理性能[J]. 复合材料学报, 2020, 37(8):1951-1959.

    ZENG F K, MA H B, JIANG N. Preparation and thermophysical properties of aligned graphite flake/Cu composites[J]. Acta Materiae Compositae Sinica,2020,37(8):1951-1959(in Chinese).
    [24] LIU Q, TANG S W, HUANG J C, et al. Microstructure and thermal conductivity of graphite flake/Cu composites with a TiC or Cu coating on graphite flakes[J]. Materials Research Express,2019,6(12):125632 (12pp).
    [25] ZHANG Y, ZHANG H L, WU J H, et al. Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles-sciencedirect[J]. Scripta Materialia,2011,65(12):1097-1100. doi: 10.1016/j.scriptamat.2011.09.028
    [26] KUNIYA K, ARAKAWA H, KANAI T, et al. Thermal conductivity, electrical conductivity and specific heat of copper-carbon fiber composites[J]. Transactions of the Japan Institute of Metals,1987,28(10):819-826.
    [27] PRASHER R. Thermal boundary resistance and thermal conductivity of multiwalled carbon nanotubes[J]. Physical Review B, Condensed Matter,2008,77(7):439-446.
    [28] MORATH C J, MARIS H J, CUOMO J J, et al. Picosecond optical studies of amorphous diamond and diamondlike carbon: Thermal conductivity and longitudinal sound velocity[J]. Journal of Applied Physics,1994,76(5):2636-2640. doi: 10.1063/1.357560
    [29] YUAN M Y, TAN Z Q, FAN G L, et al. Theoretical modelling for interface design and thermal conductivity prediction in diamond/Cu composites[J]. Diamond and Related Materials,2018,81:38-44. doi: 10.1016/j.diamond.2017.11.010
    [30] 刘骞. 非连续石墨/铜复合材料的制备与热性能研究[D]. 北京: 北京科技大学, 2016.

    LIU Q. Research of preparation and thermal properties of discontinuous graphite/copper[D]. Beijing: University of Science and Technology Beijing, 2016(in Chinese).
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1375
  • HTML全文浏览量:  544
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-02
  • 修回日期:  2021-04-08
  • 录用日期:  2021-04-29
  • 网络出版日期:  2021-05-13
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回