留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛酸钡-氮化硼/聚间苯二甲酰间苯二胺复合电介质的制备与导热性能

段广宇 胡凤英 胡祖明 迟长龙 李玥 于翔

段广宇, 胡凤英, 胡祖明, 等. 钛酸钡-氮化硼/聚间苯二甲酰间苯二胺复合电介质的制备与导热性能[J]. 复合材料学报, 2022, 39(3): 1079-1090. doi: 10.13801/j.cnki.fhclxb.20210513.005
引用本文: 段广宇, 胡凤英, 胡祖明, 等. 钛酸钡-氮化硼/聚间苯二甲酰间苯二胺复合电介质的制备与导热性能[J]. 复合材料学报, 2022, 39(3): 1079-1090. doi: 10.13801/j.cnki.fhclxb.20210513.005
DUAN Guangyu, Hu Fengying, HU Zuming, et al. Preparation and thermal conductivity of barium titanate-boron nitride/poly(m-phenyleneisophthalamide) dielectric composites[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1079-1090. doi: 10.13801/j.cnki.fhclxb.20210513.005
Citation: DUAN Guangyu, Hu Fengying, HU Zuming, et al. Preparation and thermal conductivity of barium titanate-boron nitride/poly(m-phenyleneisophthalamide) dielectric composites[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1079-1090. doi: 10.13801/j.cnki.fhclxb.20210513.005

钛酸钡-氮化硼/聚间苯二甲酰间苯二胺复合电介质的制备与导热性能

doi: 10.13801/j.cnki.fhclxb.20210513.005
基金项目: 国家自然科学基金(51608175);河南省高校科技创新人才计划(20HASTIT016);河南省科技攻关项目(202102310605)
详细信息
    通讯作者:

    于翔,博士研究生,副教授,研究方向为功能高分子复合电介质 E-mail:yxpolymer@sina.com

  • 中图分类号: TB332

Preparation and thermal conductivity of barium titanate-boron nitride/poly(m-phenyleneisophthalamide) dielectric composites

  • 摘要: 选用聚多巴胺(PDA)和十八烷基异氰酸酯分别改性钛酸钡纳米线(BTW)和氮化硼纳米片(BNNSs)来构筑D@BTW-fBNNSs高介电导热填料。研究了D@BTW-fBNNSs高介电导热填料对芳香族聚酰胺(PMIA)基复合电介质介电性能、击穿强度和导热性能的影响。结果表明:随着复合电介质中D@BTW-fBNNSs含量的增加,PMIA基复合电介质的介电常数提升明显;当D@BTW-fBNNSs含量为15wt%时,PMIA基复合电介质在103 Hz时的介电常数相较于PMIA基体提高了75%,同时在高温环境中(>150℃)PMIA基复合电介质的介电性能保持稳定,能够满足高温环境的使用要求。此外,D@BTW-fBNNSs还明显改善了PMIA基复合电介质的导热性能;含有15wt%D@BTW-fBNNSs的PMIA基复合电介质,其导热系数相较于PMIA基体提升了1.5倍。本研究将为设计具有高介电常数、低热效应的耐高温聚合物基电介质提供新的方法和思路。

     

  • 图  1  D@BTW-fBNNSs/PMIA复合电介质制备流程图

    Figure  1.  Diagram of preparation of D@BTW-fBNNSs/PMIA composite

    BTW—Barium titanate nanowires; D@BTW—Polydopamine@barium titanate nanowires; BN—Boron nitride; fBNNSs—Functional boron nitride nanosheets; PMIA—Poly(m-phenyleneisophthalamide)

    图  2  BTW的SEM图(a)和高分辨率TEM图(b);(c) D@BTW的高分辨率TEM图;BNNSs的高分辨率TEM图(右上角为BNNSs的电子衍射图,左下角为BNNSs溶液(1 mg/mL)的丁达尔效应) (d)和AFM图(e);(f) D@BTW-fBNNSs的TEM图

    Figure  2.  SEM image (a) and high-resolution TEM image (b) of BTW; (c) High-resolution TEM image of D@BTW; High-resolution TEM image of BNNSs (insert in upper right corner is electron diffraction pattern of BNNSs, insert in lower left corner is Tyndall effect of BNNSs solution (1 mg/mL)) (d) and AFM image of BNNSs (e); (f) TEM image of D@BTW-fBNNSs

    图  3  BNNSs、fBNNSs、D@BTW-fBNNSs、BTW和D@BTW的FTIR图谱(a)和XRD图谱(b)

    Figure  3.  FTIR spectra (a) and XRD pattern (b) of BNNSs,fBNNSs,D@BTW-fBNNSs,BTW and D@BTW

    图  4  D@BTW-fBNNSs/PMIA复合电介质FTIR图谱(a)和XRD图谱(b)

    Figure  4.  FTIR spectra (a) and XRD pattern (b) of D@BTW-fBNNSs/PMIA composites

    图  5  D@BTW-fBNNSs/PMIA复合电介质的SEM图: (a) PMIA;(b) 5wt%D@BTW-fBNNSs/PMIA;(c) 7wt%D@BTW-fBNNSs/PMIA;(d) 10wt%D@BTW-fBNNSs/PMIA;(e) 15wt%D@BTW-fBNNSs/PMIA;(f) 图(e)中矩形区域

    Figure  5.  SEM images of D@BTW-fBNNSs/PMIA composites: (a) PMIA; (b) 5wt%D@BTW-fBNNSs/PMIA; (c) 7wt%D@BTW-fBNNSs/PMIA; (d) 10wt%D@BTW-fBNNSs/PMIA; (e) 15wt%D@BTW-fBNNSs/PMIA; (f) Magnified area of rectangle in figure (e)

    图  6  D@BTW-fBNNSs/PMIA复合电介质的应力应变曲线(a)和拉伸强度(左)与弹性模量(右) (b)

    Figure  6.  Stress-strain curves (a) and tensile strength (left) and modulus of elasticity (right) (b) of D@BTW-fBNNSs/PMIA composites

    图  7  D@BTW-fBNNSs/PMIA复合电介质介电常数(a)、介电损耗(b)和电导率|σ| (插图为0.1~10 Hz的放大图) (c)

    Figure  7.  Dielectric constant (a), dielectric loss (b) and conductivity |σ| (c) (inset: the enlarged curves in the frequency range from 0.1-10 Hz) of D@BTW-fBNNSs/PMIA composites

    图  8  12wt%D@BTW-fBNNSs/PMIA介电常数(a)和介电损耗与温度的关系(b)

    Figure  8.  Dielectric constant (a) and dielectric loss as a function of temperature (b) of 12wt%D@BTW-fBNNSs/PMIA

    图  9  D@BTW-fBNNSs/PMIA复合电介质威布尔分布(a)、威布尔击穿强度和威布尔分布参数β值(b)

    Figure  9.  Weibull plots (a), weibull breakdown strength and Weibull distribution parameters β values (b) of D@BTW-fBNNSs/PMIA composites

    P—Probability of failure; E—Electric field

    图  10  D@BTW-fBNNSs/PMIA复合电介质的面向导热系数(a)和增长指数(b)

    Figure  10.  Through-plane thermal conductivity (a) and enhancement factor (b) of D@BTW-fBNNSs/PMIA composite

  • [1] ZHANG T, CHEN X, THAKURA Y, et al. Highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature[J]. Science Advances,2020,6(4):eaax6622. doi: 10.1126/sciadv.aax6622
    [2] GUO M F, JIANG J Y, SHEN Z H, et al. High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: enhanced breakdown strength and improved discharge efficiency[J]. Materials Today,2019,29:49-67. doi: 10.1016/j.mattod.2019.04.015
    [3] HUANG X Y, SUN B, ZHU Y K, et al. High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications[J]. Progress in Materials Science,2019,100:187-225. doi: 10.1016/j.pmatsci.2018.10.003
    [4] ZHANG D, MA C, ZHOU X F, et al. High-performance capacitors using BaTiO3 nanowires engineered by rigid liquid-crystalline polymers[J]. Journal of Physical Chemistry C,2017,121(37):20075-20083. doi: 10.1021/acs.jpcc.7b03391
    [5] WANG M, LIA W L, FENG, Y, et al. Effect of BaTiO3 nanowires on dielectric properties and energy storage density of polyimide composite films[J]. Ceramics International,2015,41(10):13582-13588. doi: 10.1016/j.ceramint.2015.07.153
    [6] HARRY P. Composite for energy storage takes the heat[J]. Nature,2015,523(7562):536-537. doi: 10.1038/523536a
    [7] XU X F, CHEN J, ZHOU J, et al. Thermal conductivity of polymers and their nanocomposites[J]. Advanced Materials,2018,30(17):1705544. doi: 10.1002/adma.201705544
    [8] SHEN Z H, WANG J J, JIANG J Y, et al. Phase-field model of electrothermal breakdown in flexible high-temperature nanocomposites under extreme conditions[J]. Advanced Energy Materials,2018,8(20):1800509. doi: 10.1002/aenm.201800509
    [9] DUAN G Y, WANG Y, YU J R, et al. Improved thermal conductivity and dielectric properties of flexible PMIA composites with modified micro- and nano-sized hexagonal boron nitride[J]. Frontiers of Materials Science,2019,13(1):64-76. doi: 10.1007/s11706-019-0446-3
    [10] DUAN G Y, WANG Y, YU J R, et al. Novel poly(m-phenyleneisophthalamide) dielectric composites with enhanced thermal conductivity and breakdown strength utilizing functionalized boron nitride nanosheets[J]. Macromolecular Materials and Engineering,2019,304(11):1900310. doi: 10.1002/mame.201900310
    [11] WENG Q H, WANG X B, WANG X, et al. Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications[J]. Chemical Society Reviews,2016,45(14):3989-4012. doi: 10.1039/C5CS00869G
    [12] JIANG Y, LIU Y J, MIN P, et al. BN@PPS core-shell structure particles and their 3D segregated architecture composites with high thermal conductivities composites[J]. Composites Science and Technology,2017,144:63-69.
    [13] YU B, XING W Y, GUO W W, et al. Thermal exfoliation of hexagonal boron nitride for effective enhancements on thermal stability, flame retardancy and smoke suppression of epoxy resin nanocomposites via sol-gel process[J]. Journal of Materials Chemistry A,2016,4(19):7330-7340. doi: 10.1039/C6TA01565D
    [14] WANG N, YANG G, WANG H X, et al. A universal method for large-yield and high-concentration exfoliation of two-dimensional hexagonal boron nitride nanosheets[J]. Materials Today,2019,27:33-42. doi: 10.1016/j.mattod.2018.10.039
    [15] XIE Y C, YU Y Y, FENG Y F, et al. Fabrication of stretchable nanocomposites with high energy density and low loss from cross-linked PVDF filled with poly(dopamine) encapsulated BaTiO3[J]. ACS Applied Materials & Interfaces,2017,9(3):2995-3005.
    [16] DUAN G Y, WANG Y, YU J R, et al. Preparation of PMIA dielectric nanocomposite with enhanced thermal conduc-tivity by filling with functionalized graphene-carbon nano-tube hybrid fillers[J]. Applied Nanoscience,2019,9(8):1743-1757. doi: 10.1007/s13204-019-00955-0
    [17] XIE Y C, WANG J, Yu Y Y, et al. Enhancing breakdown strength and energy storage performance of PVDF-based nanocomposites by adding exfoliated boron nitride[J]. Applied Surface Science,2018,440:1150-1158. doi: 10.1016/j.apsusc.2018.01.301
    [18] KOICHI S, MASASHI A, NAOYUKI U, et al. Transparent BaTiO3/PMMA nanocomposite films for display technologies: facile surface modification approach for BaTiO3 nanoparticles[J]. ACS Applied Nano Materials,2018,1(5):2430-2437. doi: 10.1021/acsanm.8b00650
    [19] ZHANG X, SHEN Y, ZHANG Q H, et al. Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering[J]. Advanced Materials,2015,27(5):819-824. doi: 10.1002/adma.201404101
    [20] HE D L, WANG Y, CHEN X Q, et al. Core-shell structured BaTiO3@Al2O3 nanoparticles in polymer composites for dielectric loss suppression and breakdown strength enhancement[J]. Composites: Part A,2017,93:137-143. doi: 10.1016/j.compositesa.2016.11.025
    [21] XIE B, ZHANG H B, ZHANG Q, et al. Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO3 nanowires[J]. Journal of Materials Chemistry A,2017,5(13):6070-6078. doi: 10.1039/C7TA00513J
    [22] HUA P H, SUN W D, FAN M Z, et al. Large energy density at high-temperature and excellent thermal stability in polyimide nanocomposite contained with small loading of BaTiO3 nanofibers[J]. Applied Surface Science,2018,458:743-750. doi: 10.1016/j.apsusc.2018.07.128
    [23] LV X G, LUO H, CHEN S, et al. BaTiO3 platelets and poly (vinylidene fluoride-trifluoroethylenechlorofluoroethy-lene) hybrid composites for energy storage application[J]. Mechanical Systems and Signal Processing,2018,108:48-57. doi: 10.1016/j.ymssp.2018.02.011
    [24] LIU F H, LI Q, LI Z Y, et al. Poly (methyl methacrylate)/boron nitride nanocomposites with enhanced energy density as high temperature dielectrics[J]. Composites Science and Technology,2017,142:139-144. doi: 10.1016/j.compscitech.2017.02.006
    [25] LAO J P, XIE H A, SHI Z Q, et al. Flexible regenerated cellulose/boron nitride nanosheet high-temperature dielectric nanocomposite films with high energy density and breakdown strength[J]. ACS Sustainable Chemistry & Engineering,2018,6(5):7151-7158.
    [26] ZHU Y K, ZHU Y J, HUANG X Y, et al. High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets[J]. Advanced Energy Materials,2019,9(36):1901826.
  • 加载中
图(10)
计量
  • 文章访问数:  963
  • HTML全文浏览量:  573
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-08
  • 修回日期:  2021-04-24
  • 录用日期:  2021-04-27
  • 网络出版日期:  2021-05-13
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回