留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多功能疏水/超疏水复合涂层的制备及其防覆冰性

徐达 肖振 余新泉 张友法

徐达, 肖振, 余新泉, 等. 多功能疏水/超疏水复合涂层的制备及其防覆冰性[J]. 复合材料学报, 2022, 39(3): 1102-1109. doi: 10.13801/j.cnki.fhclxb.20210513.004
引用本文: 徐达, 肖振, 余新泉, 等. 多功能疏水/超疏水复合涂层的制备及其防覆冰性[J]. 复合材料学报, 2022, 39(3): 1102-1109. doi: 10.13801/j.cnki.fhclxb.20210513.004
XU Da, XIAO Zhen, YU Xinquan, et al. Preparation and anti-icing characteristics of multifunctional hydrophobic/superhydrophobic composite coating[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1102-1109. doi: 10.13801/j.cnki.fhclxb.20210513.004
Citation: XU Da, XIAO Zhen, YU Xinquan, et al. Preparation and anti-icing characteristics of multifunctional hydrophobic/superhydrophobic composite coating[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1102-1109. doi: 10.13801/j.cnki.fhclxb.20210513.004

多功能疏水/超疏水复合涂层的制备及其防覆冰性

doi: 10.13801/j.cnki.fhclxb.20210513.004
基金项目: 国家自然科学基金(52071076)
详细信息
    通讯作者:

    张友法,博士,副教授,博士生导师,研究方向为仿生纳米超浸润涂层 E-mail:yfzhang@seu.edu.cn

  • 中图分类号: TB332

Preparation and anti-icing characteristics of multifunctional hydrophobic/superhydrophobic composite coating

  • 摘要: 防覆冰现已成为飞机结构、输电线路、制冷器械等设备上亟待解决的问题。对自主研发的三种疏水/超疏水复合涂层的防覆冰特性进行了综合对比研究,重点分析了各涂层在机械耐久性及超低温条件下除冰性的优势。测试结果表明:底漆-面漆复合超疏水涂层具备较优异的机械耐久性,在磨耗仪250 g载荷下磨耗40次后及冻融循环100次后冰剪切强度均小于30 kPa;而疏水纳米颗粒-润滑脂复合涂层超低温−150℃下的除冰性能表现优异,其初始冰层剪切力仅为11.5 kPa。本文研究成果将为疏水/超疏水涂层在防覆冰领域的应用提供有益的理论和实际指导。

     

  • 图  1  底漆-面漆复合超疏水涂层(PFC)的制备工艺

    Figure  1.  Preparation technology of primer-finish composite superhydrophobic coating (PFC)

    FEVE—FEVE fluorocarbon resin; PU—Polyurethane

    图  2  疏水纳米颗粒-润滑脂复合涂层(NGC)的制备工艺

    Figure  2.  Preparation technology of nanoparticle-lubricating grease composite coating (NGC)

    图  3  界面润滑复合涂层(ILC)的制备工艺

    Figure  3.  Preparation technology of interface lubricating composite coating (ILC)

    图  4  底漆-面漆复合超疏水涂层(PFC)、界面润滑复合涂层(ILC)和疏水纳米颗粒-润滑脂复合涂层(NGC)复合涂层的微观组织形貌图像

    Figure  4.  Microstructures of primer-finish composite superhydrophobic coating (PFC), interface lubricating composite coating (ILC) and nanoparticle-lubricating grease composite coating (NGC) composite coatings

    图  5  复合涂层表面的静态水滴−10℃下延迟结冰特性

    Figure  5.  Characteristics of static water droplet delayed icing at −10℃ on composite coating surface

    图  6  PFC、ILC和NGC复合涂层机械耐久性测试

    Figure  6.  Mechanical durability test of PFC, ILC and NGC composite coatings

    图  7  复合涂层的微观组织形貌图和耐磨性失效机制

    Figure  7.  Microstructures and abrasion resistance failure mechanism of composite coatings

    图  8  复合涂层的微观组织形貌图和冻融循环机制

    Figure  8.  Microstructure and freezing/melting cycle mechanism of composite coating

    图  9  试验模具在冰风洞中不同时间下的试验观察结果

    Figure  9.  Experimental observation results of the test mold in the ice wind tunnel at different times

    表  1  复合涂层表面的润湿性测试

    Table  1.   Wettability test of composite coating surface

    CoatingBaseILCNGCPFC
    Contact angle/(°) 36.7 105.1 124.3 159.6
    Sliding angle/(°) >90 37.7 53.8 2.6
    Note: Base—Base surface.
    下载: 导出CSV
  • [1] ZHANG D, JIN X Z, HUANG T, et al. Electrospun fibrous membranes with dual-scaled porous structure: super hydrophobicity, super lipophilicity, excellent water adhesion, anti-icing for highly efficient oil adsorption/separation[J]. ACS Applied Materials & Interfaces,2019,11(5):5073-5083.
    [2] ZHANG S, HUANG J, CHENG Y, et al. Bioinspired surfaces with superwettability for anti-icing and ice-phobic application: concept, mechanism, and design[J]. Small,2017,13(48):1701867. doi: 10.1002/smll.201701867
    [3] PAN S, GUO R, BJORNMALM M, et al. Coatings super-repellent to ultralow surface tension liquids[J]. Nature Materials,2018,17(11):1040-1047. doi: 10.1038/s41563-018-0178-2
    [4] SCHUTZIUS T, JUNG S, MAITRA T, et al. Physics of icing and rational design of surfaces with extraordinary icephobicity[J]. Langmuir,2015,31(17):4807-4821. doi: 10.1021/la502586a
    [5] SHEN Y, WU X, TAO J, et al. Icephobic materials: Fundamentals, performance evaluation, and applications[J]. Progress in Materials Science,2019,103:509-557. doi: 10.1016/j.pmatsci.2019.03.004
    [6] LO C, SAHOO V, LU M. Control of ice formation[J]. ACS Nano,2017,11(3):2665-2674. doi: 10.1021/acsnano.6b07348
    [7] XIAO Z, ZHU H, WANG S, et al. Multifunctional superwetting composite coatings for long-term anti-icing, air purifcation, and oily water separation[J]. Advanced Materials Interfaces,2020,7(8):2000013. doi: 10.1002/admi.202000013
    [8] SHEN Y, WU Y, TAO J, et al. Spraying fabrication of durable and transparent coatings for anti-icing application: Dynamic water repellency, icing delay, and ice adhesion[J]. ACS Applied Materials & Interfaces,2019,11(3):3590-3598.
    [9] WANG F, XIAO S, ZHUO Y, et al. Liquid layer generator for excellent icephobicity at extremely low temperature[J]. Materials Horizons,2019,6:2063-2072. doi: 10.1039/C9MH00859D
    [10] 戴海军, 李嘉禄, 孙颖, 等. 纬编双轴向织物/环氧树脂电加热复合材料电热及层间剪切性能[J]. 复合材料学报, 2020, 37(8):1997-2004.

    DAI H J, LI J L, SUN Y, et al. Electrothermal and interlaminar shear properties of weft knitted biaxial fabric/epoxy resin electrically heated composites[J]. Acta Materiae Compositae Sinica,2020,37(8):1997-2004(in Chinese).
    [11] JAMIL M, ALI A, HAQ F, et al. Icephobic strategies and materials with superwettability: Design principles and mechanism[J]. Langmuir,2018,34(50):15425-15444. doi: 10.1021/acs.langmuir.8b03276
    [12] GOHARI B, RUSSELL K, HEJAZI V, et al. Role of water solidification concepts in designing nano-textured anti-icing surfaces[J]. Journal of Physical Chemistry B,2017,121:7527-7535. doi: 10.1021/acs.jpcb.7b04081
    [13] CHEN F, XU Z, WANG H, et al. Bioinspired tough organohydrogel dynamic interfaces enabled subzero temperature antifrosting, deicing, and antiadhesion[J]. ACS Applied Materials & Interfaces,2020,12(49):55501-55509.
    [14] LIU Z, WANG Y, REN Y, et al. Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper[J]. Materials Horizons,2020,7:919-927. doi: 10.1039/C9MH01688K
    [15] LI T, PABLO F, IBÁEZ I, et al. Self-deicing electrolyte hydrogel surfaces with pa-level ice adhesion and durable anti-freezing/frost performance[J]. ACS Applied Materials & Interfaces,2020,12(31):35572-35578.
    [16] CAO M, GUO D, YU C, et al. Water-repellent properties of superhydrophobic and lubricant-infused “slippery” surfaces: A brief study on the functions and applications[J]. ACS Applied Materials & Interfaces,2016,8(6):3615-3623.
    [17] LI Y, LI B, ZHAO X, et al. Totally waterborne, nonfluorinated, mechanically robust and self-healing superhydrophobic coatings for actual anti-icing[J]. ACS Applied Materials & Interfaces,2018,10(45):39391-39399.
    [18] WONG T, KANG S, TANG S, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature,2011,477(7365):443-447. doi: 10.1038/nature10447
    [19] ZHU L, XUE J, WANG Y, et al. Ice-phobic coatings based on silicon-oil-infused polydimethylsiloxane[J]. ACS Applied Materials & Interfaces,2013,5(10):4053-4062.
    [20] 包晓慧, 明平美, 毕向阳, 等. SiC/Al复合材料超疏水表面的制备[J]. 复合材料学报, 2017, 34(1):129-134.

    BAO X H, MING P M, BI X Y, et al. Preparation of superhydrophobic surface based on SiC/Al composite[J]. Acta Materiae Compositae Sinica,2017,34(1):129-134(in Chinese).
    [21] XIAO Z, WANG Q, YAO D, et al. Enhancing robustness of superhydrophobic coatings via addition of sulfide[J]. Langmuir,2019,35(20):6650-6656.
    [22] 张友法, 张文文, 郑日恒, 等. 高超声速组合发动机预冷器抗结霜涂层技术研究[J]. 推进技术, 2017, 38(2):463-470.

    ZHANG Y F, ZHANG W W, ZHENG R H, et al. Research of anti-frosting coating for pre-cooler of hypersonic combined propulsion[J]. Tournal of Propulsion Technology,2017,38(2):463-470(in Chinese).
    [23] GAO S, LIU B, PENG J, et al. Icephobic durability of branched PDMS slippage coatings co-crosslinked by functionalized POSS[J]. ACS Applied Materials & Interfaces,2019,11(4):4654-4666.
    [24] 张志华, 王文琴, 祖国庆, 等. SiO2气凝胶材料的制备、性能及其低温保温隔热应用[J]. 航空材料学报, 2015, 35(1):87-96. doi: 10.11868/j.issn.1005-5053.2015.1.015

    ZHANG Z H, WANG W Q, ZU G Q, et al. Preparation and properties of SiO2 aerogel material and its application in low temperature insulation[J]. Tournal of Aeronautical Materials,2015,35(1):87-96(in Chinese). doi: 10.11868/j.issn.1005-5053.2015.1.015
    [25] RUAN M, ZHAN Y, WU Y, et al. Preparation of PTFE/PDMS superhydrophobic coating and its anti-icing performance[J]. RSC Advances,2017,7(66):41339-41344. doi: 10.1039/C7RA05264B
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1247
  • HTML全文浏览量:  615
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-24
  • 修回日期:  2021-04-24
  • 录用日期:  2021-05-04
  • 网络出版日期:  2021-05-13
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回