留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiO2粒子的尺度因素对聚乙烯基复合材料的结晶行为及电学性能的影响

姜洪涛 张晓虹 高俊国 郭宁

姜洪涛, 张晓虹, 高俊国, 等. SiO2粒子的尺度因素对聚乙烯基复合材料的结晶行为及电学性能的影响[J]. 复合材料学报, 2022, 39(2): 645-655. doi: 10.13801/j.cnki.fhclxb.20210513.002
引用本文: 姜洪涛, 张晓虹, 高俊国, 等. SiO2粒子的尺度因素对聚乙烯基复合材料的结晶行为及电学性能的影响[J]. 复合材料学报, 2022, 39(2): 645-655. doi: 10.13801/j.cnki.fhclxb.20210513.002
JIANG Hongtao, ZHANG Xiaohong, GAO Junguo, et al. Influence of SiO2 particle size factors on the crystallization behavior and electrical properties of polyethylene matrix composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 645-655. doi: 10.13801/j.cnki.fhclxb.20210513.002
Citation: JIANG Hongtao, ZHANG Xiaohong, GAO Junguo, et al. Influence of SiO2 particle size factors on the crystallization behavior and electrical properties of polyethylene matrix composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 645-655. doi: 10.13801/j.cnki.fhclxb.20210513.002

SiO2粒子的尺度因素对聚乙烯基复合材料的结晶行为及电学性能的影响

doi: 10.13801/j.cnki.fhclxb.20210513.002
基金项目: 国家自然科学基金(51577045)
详细信息
    通讯作者:

    张晓虹,博士,教授,博士生导师,研究方向为微纳米复合电介质的结构与性能  E-mail:x_hzhang2002@hrbust.edu.cn

    高俊国,博士,教授,硕士生导师,研究方向为高压绝缘介电强度及影响机制、电力设备绝缘态评价与检测 E-mail:gaojunguo@hrbust.edu.cn

  • 中图分类号: TB332, TB334

Influence of SiO2 particle size factors on the crystallization behavior and electrical properties of polyethylene matrix composites

  • 摘要: 分别选用粒径分别为1 μm、30 nm和100 nm的SiO2粒子作添加粒子,以低密度聚乙烯(LDPE)为基体,制备三种SiO2/LDPE复合材料。对各复合材料的结晶行为进行分析,分析各材料的结晶度,同时对每种材料在频率影响下的相对介电常数εr和损耗因子tanδ变化情况进行研究,并探究了各材料的电导电流及空间电荷特性。结果表明,添加粒子的尺寸越小,其所形成的复合材料的晶体尺寸与间距就越小。添加30 nm SiO2粒子后,材料结晶度增加显著;添加100 nm SiO2粒子所构成的微观结构能有效限制分子链运动,使复合材料极化建立困难;大尺寸粒子的添加会对原有结晶结构造成破坏,形成的新结晶结构能促进载流子的迁移;这三种SiO2粒子中,30 nm SiO2粒子的添加能有效抑制空间电荷,100 nm SiO2粒子的加入,则会造成电极附近的异极性电荷积聚。

     

  • 图  1  电导电流测试装置

    Figure  1.  Conductance current test device

    图  2  电声脉冲法实验系统

    Figure  2.  Test system of pulsed electro-acoustic method

    DC—Direct current

    图  3  不同粒径的SiO2的形态

    Figure  3.  Morphologies of SiO2 with different particle sizes

    图  4  SiO2/LDPE复合材料的结晶形态

    Figure  4.  Crystalline morphologies of SiO2/LDPE composites

    图  5  SiO2/LDPE复合材料的DSC曲线

    Figure  5.  DSC curves of SiO2/LDPE composites

    图  6  SiO2/LDPE复合材料介电常数εr随频率f变化曲线

    Figure  6.  Variation curves of relative dielectric constant εr with frequency f of SiO2/LDPE composites

    图  7  SiO2/LDPE复合材料损耗因子tanδ随频率f变化曲线

    Figure  7.  Variation curve of loss factor tanδ with frequency f for SiO2/LDPE composites

    图  8  LDPE及SiO2/LDPE复合材料的电导电流随场强变化曲线

    Figure  8.  Curves of the conductance current of LDPE and SiO2/LDPE composites changing with the field intensity

    图  9  LDPE及SiO2/LDPE复合材料的电导电流随场强变化拟合曲线

    Figure  9.  Curves fitting curves of conductance current of LDPE and SiO2/LDPE composites changing with the field intensity

    图  10  LDPE及SiO2/LDPE复合材料的空间电荷特性曲线

    Figure  10.  Space charge characteristic curves of LDPE and SiO2/LDPE composites

    表  1  SiO2/LDPE复合材料的组成成分及含量

    Table  1.   Compositions and contents of SiO2/LDPE composites

    SpecimenMass fraction/wt%
    LDPE1 μm SiO230 nm SiO2100 nm SiO2
    LDPE 100 0 0 0
    1 μm SiO2/LDPE 99 1 0 0
    30 nm SiO2/LDPE 99 0 1 0
    100 nm SiO2/LDPE 99 0 0 1
    Note: LDPE—Low-density polyethylene.
    下载: 导出CSV

    表  2  SiO2/LDPE复合材料的熔融峰值与结晶度

    Table  2.   Melting peaks and crystallinities of SiO2/LDPE composites

    SampleTm/℃Xc/%$ {\Delta H}_{\rm{m}} $/(J·g−1)
    LDPE 108.18 30.78 90.37
    1 μm SiO2/LDPE 107.62 28.45 83.52
    30 nm SiO2/LDPE 109.12 37.01 108.66
    100 nm SiO2/LDPE 110.31 29.35 86.17
    Notes: Tm—Melting temperature Xc—Crystallinity; $ {\Delta H}_{\rm{m}} $—
    Melting enthalpy.
    下载: 导出CSV

    表  3  SiO2/LDPE复合材料的陷阱密度与载流子迁移率

    Table  3.   Trap density and carrier mobility of SiO2/LDPE composites

    Sampled/μmU/kVnt/1018m3μe/(10−23 m2·V−1·s−1)
    LDPE 210 4.38 14.9 1.41
    1 μm SiO2/LDPE 210 2.29 8.23 3.93
    30 nm SiO2/LDPE 210 3.32 12.0 1.13
    100 nm SiO2/LDPE 210 3.71 13.0 1.06
    Notes: d—Sample thickness; U—Transient voltage; nt—Trap density; μe—Effective carrier mobility.
    下载: 导出CSV
  • [1] 杜伯学, 韩晨磊, 李进, 等. 高压直流电缆聚乙烯绝缘材料研究现状[J]. 电工技术学报, 2019, 34(1):180-191.

    DU Boxue, HAN Chenlei, LI Jin, et al. Research status of polyethylene insulation for high voltage direct current cables[J]. Transactions of China Electrotechnical Society,2019,34(1):180-191(in Chinese).
    [2] HANLEY T L, BURFORD R P, FLEMING R J, et al. A general review of polymeric insulation for use in HVDC cable[J]. IEEE Electrical Insulation Magazine,2003,19(1):13-24. doi: 10.1109/MEI.2003.1178104
    [3] SINGHA S, THOMAS M J. Permittivity and tan delta characteristics of epoxy nanocomposites in the frequency range of 1 MHz−1 GHz[J]. IEEE Transactions on Dielectrics & Electrical Insulation,2008,15(1):2-11.
    [4] 郑煜, 吴建东, 王俏华, 等. 空间电荷与直流电导联合测试技术 用于纳米 MgO 抑制 XLPE 中空间电荷的研究[J]. 电工技术学报, 2012, 27(5):126-131.

    ZHENG Yu, WU Jiandong, WANG Qiaohua, et al. Research on the space charge suppressing mechanism of Nano-MgO in XLPE with a Joint measuring technology of dc conduction and space charge[J]. Transactions of China Electrotechnical Society,2012,27(5):126-131(in Chinese).
    [5] 梁曦东, 陈昌渔, 周远翔. 高电压工程[M]. 北京: 清华大学出版社, 2003: 121-125.

    LIANG Xidong, CHEN Changyu, ZHOU Yuanxiang. High Voltage Engineering[M]. Beijing: Tsinghua University Press, 2003: 121-125(in Chinese).
    [6] 周远翔, 沙彦超, 陈维江. 变压器油与绝缘纸板电导特性研究[J]. 电网技术, 2013, 37(9):2527-2533.

    ZHOU Yuanxiang, SHA Yanchao, CHEN Weijiang. Conduction characteristics in transformer oil and electrical insulation paper[J]. Power System Technology,2013,37(9):2527-2533(in Chinese).
    [7] 周远翔, 张灵, 沙彦超, 等. 直流电场下低密度聚乙烯纳米介质 空间电荷特性的数值分析[J]. 高电压技术, 2013, 39(8):1813-1820. doi: 10.3969/j.issn.1003-6520.2013.08.002

    ZHOU Yuanxiang, ZHANG Ling, SHA Yanchao, et al. Numerical analysis of space charge characteristics in low-density polyethylene nanocomposite under external DC electric field[J]. High Voltage Engineering,2013,39(8):1813-1820(in Chinese). doi: 10.3969/j.issn.1003-6520.2013.08.002
    [8] 艾叶, 李春阳, 赵洪, 等. 纳米SiO2对交联聚乙烯交/直流击穿强度和耐电树枝性能影响[J]. 复合材料学报, 2019, 36(9):2031-2041.

    AI Ye, LI Chunyang, ZHAO Hong, et al. Effects of nano SiO2 on AC/DC breakdown strength and electrical treeing resistance of cross-linked polyethylene[J]. Acta Materiae Compositae Sinica,2019,36(9):2031-2041(in Chinese).
    [9] 程羽佳, 张晓虹, 郭宁, 等. 纳米ZnO/低密度聚乙烯复合材料的介电特性[J]. 复合材料学报, 2016, 33(7):1351-1360.

    CHENG Yujia, ZHANG Xiaohong, GUO Ning, et al. Dielectric properties of nano ZnO/low density polyethylene composites[J]. Acta Materiae Compositae Sinica,2016,33(7):1351-1360(in Chinese).
    [10] 徐明忠, 赵洪, 吉超, 等. MgO/LDPE 纳米复合材料制备及其 空间电荷特性[J]. 高电压技术, 2012, 38(3):684-690.

    XU Mingzhong, ZHAO Hong, JI Chao, et al. Preparation of MgO/LDPE nanocomposits and its space charge property[J]. High Voltage Engineering,2012,38(3):684-690(in Chinese).
    [11] 吴建东, 尹毅, 兰莉, 等. 纳米填充浓度对 LDPE/Silica 纳米 复合介质中空间电荷行为的影响[J]. 中国电机工程学报, 2012, 32(28):177-183.

    WU Jiandong, YIN Yi, LAN Li, et al. The influence of nano-filler concentration on space charge behavior in LDPE/Silica nanocomposites[J]. Proceedings of the CESS,2012,32(28):177-183(in Chinese).
    [12] FLEMING R J, AMMALA A, CASEY P S, et al. Conduction and space charge in LDPE/TiO2 nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2010,18(1):15-23.
    [13] 陈少卿, 成霞, 王霞, 等. 纳米氧化锌/聚乙烯复合材料中空 间电荷及体积电阻率的研究[J]. 绝缘材料, 2007, 40(2):48-53. doi: 10.3969/j.issn.1009-9239.2007.02.016

    CHEN Shaoqing, CHENG Xia, WANG Xia, et al. Study of space charge distribution and volume resistivity in composite of polyethylene/nano zinc oxide[J]. Insulating Materials,2007,40(2):48-53(in Chinese). doi: 10.3969/j.issn.1009-9239.2007.02.016
    [14] 牟海龙, 郝笑龙, 肖泽芳, 等. 改性纳米或微米SiO2的分散方法对木粉-SiO2/聚丙烯复合材料力学性能的影响[J]. 复合材料学报, 2007, 40(2):48-53.

    MOU Hailong, HAO Xiaolong, XIAO Zefang, et al. Effect of dispersion method of modified nano or micro SiO2 on mechanical properties of wood flour-SiO2/polypropylene composites[J]. Acta Materiae Compositae Sinica,2007,40(2):48-53(in Chinese).
    [15] 迟晓红, 程璐, 刘文凤, 等. 聚丙烯基复合介质的结晶结构调控与性能提升[J]. 高电压技术, 2019(7):1-8.

    CHI Xiaohong, CHENG Lu, LIU Wenfeng, et al. Crystal structure regulation and performance improvement of polypropylene matrix composites[J]. High Voltage Technology,2019(7):1-8(in Chinese).
    [16] 中国国家标准化管理委员会. 固体绝缘材料体积电阻率和表面电阻率试验方法: GB/T 1410—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People’s Republic of China. Methods of test for volume resistivity and surface resistivity of solid electrical insulating materials: GB/T 1410—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [17] 梁基照. HDPE熔融热焓与结晶度的测定[J]. 广州化工, 1994, 22(4):27-30.

    LIANG J Z. Measurement of the melting enthalpy and crystallizability for HDPES[J]. Guangzhou Chemical Industry and Technology,1994,22(4):27-30(in Chinese).
    [18] 迟晓红, 俞利, 郑杰, 等. 蒙脱土/聚丙烯复合材料结晶形态及耐电树枝化特性[J]. 复合材料学报, 2015, 32(1):76-84.

    CHI X H, YU L, ZHENG J, et al. Crystallization morphology and electrical tree resistance characteristics of montmoril-lonite/polypropylene composites[J]. Acta Materiae Compositae Sinica,2015,32(1):76-84(in Chinese).
    [19] BRUGGEMAN D A G. The calculation of various physical constants of heterogeneous substances. I. The dielectric constants and conductivities of mixtures composed of isotropic substances[J]. Annalen der Physik,1935,24:636-664.
    [20] SIMMONS J G. Theory of metallic contacts on high resistivity solids (II) deep traps[J]. Journal of the Physics & Chemistry of Solids,1971,32(11):2581-2591.
    [21] BEYER J, MORSHUIS P H F, SMIT J J. Conduction current measurements on polycarbonates subjected to electrical and thermal stress[C]//Conference on Electrical Insulation & Dielectric Phenomena. IEEE, 2000.
    [22] 熊欣, 宋常立, 仲玉林, 表面物理[M]. 沈阳: 辽宁科学技术出版社, 1985: 382-396, 578-589.

    XIONG X, SONG C L, ZHONG Y L. Surface physics[M]. Shenyang: Liaoning Science and Technology Publishing House, 1985: 382-396, 578-589(in Chinese).
    [23] KWAN C K. Dielectric phenomena in solids[M]. London: Elsevier Academic Press, 2004: 400-401.
    [24] GU C. Smoothing spline ANOVA models[M]. New York: Springer Publishing, 2002: 23-237.
    [25] 陈季丹, 刘子玉. 电介质物理学[M]. 北京: 机械工业出版社, 1982: 162–234.

    CHEN J D, LIU Z Y. Dielectric physics[M]. Beijing: China Machine Press, 1982: 162–234 (in Chinese).
    [26] 王霞, 陈少卿, 成霞, 等. 电声脉冲法测量聚合物表面陷阱能级分布[J]. 中国电机工程学报, 2009, 29(1):127-132. doi: 10.3321/j.issn:0258-8013.2009.01.020

    WANG X, CHEN S Q, CHENG X, et al. Measuring energy distribution of surface trap in polymer insulation by PEA method[J]. Proceedings of the CSEE,2009,29(1):127-132(in Chinese). doi: 10.3321/j.issn:0258-8013.2009.01.020
    [27] LAU K, VAUGHAN A, CHEN G, et al. On the space charge and DC breakdown behavior of polyethylene/silica nanocomposites[J]. IEEE Transactions on Dielectrics & Electrical Insulation,2014,21(1):340-351.
    [28] 刘付德, 凌志远, 谢进, 等. 固体电介质中电致陷阱产生与电子捕获动力学[J]. 华南理工大学学报(自然科学版), 1993(1):100-107.

    LIU Fude, LING Zhiyuan, XIE Jin, et, al. Kinetics of trap generation and electrons capture in solid dielectrics under high electrical strength[J]. Journal of South China University of Technology (Natural Science),1993(1):100-107(in Chinese).
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1005
  • HTML全文浏览量:  404
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-08
  • 修回日期:  2021-04-26
  • 录用日期:  2021-04-27
  • 网络出版日期:  2021-05-13
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回