留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溶剂热法制备Bi2O3/BiOI复合光催化材料及对四环素的降解应用

高艳林 景红霞 李龙祥 王旭 杨晓峰

高艳林, 景红霞, 李龙祥, 等. 溶剂热法制备Bi2O3/BiOI复合光催化材料及对四环素的降解应用[J]. 复合材料学报, 2022, 39(2): 677-684. doi: 10.13801/j.cnki.fhclxb.20210513.001
引用本文: 高艳林, 景红霞, 李龙祥, 等. 溶剂热法制备Bi2O3/BiOI复合光催化材料及对四环素的降解应用[J]. 复合材料学报, 2022, 39(2): 677-684. doi: 10.13801/j.cnki.fhclxb.20210513.001
GAO Yanlin, JING Hongxia, LI Longxiang, et al. Preparation of Bi2O3/BiOI composite photocatalytic material by solvothermal method and its application to the degradation of tetracycline[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 677-684. doi: 10.13801/j.cnki.fhclxb.20210513.001
Citation: GAO Yanlin, JING Hongxia, LI Longxiang, et al. Preparation of Bi2O3/BiOI composite photocatalytic material by solvothermal method and its application to the degradation of tetracycline[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 677-684. doi: 10.13801/j.cnki.fhclxb.20210513.001

溶剂热法制备Bi2O3/BiOI复合光催化材料及对四环素的降解应用

doi: 10.13801/j.cnki.fhclxb.20210513.001
基金项目: 山西省自然科学基金(201901D111138);山西省回国留学人员科研资助项目(2019)
详细信息
    通讯作者:

    景红霞,博士,副教授,研究生导师,研究方向为超细材料的制备及应用 E-mail: jhx820215@126.com

  • 中图分类号: O643.36

Preparation of Bi2O3/BiOI composite photocatalytic material by solvothermal method and its application to the degradation of tetracycline

  • 摘要: 四环素作为一种广泛使用的抗生素,长期存在于水环境中难以自然降解,对生态环境和人类健康有很大危害。采用简单的室温搅拌法和溶剂热法制备了BiOI和Bi2O3/BiOI光催化剂,通过XRD、SEM、FTIR、UV-Vis DRS、PL和EIS等手段对材料的形貌和结构进行了表征,并考察了不同制备条件对Bi2O3/BiOI复合光催化材料在模拟太阳光下对四环素降解效果的影响。结果表明,当Bi2O3与BiOI的摩尔比为0.8∶1时,在pH=5、180℃下反应20 h得到的Bi2O3/BiOI复合光催化材料对四环素的降解效果最佳,在3 h内对四环素的降解率可达75%,其动力学速率常数分别是单一BiOI、Bi2O3的1.75倍和1.56倍。还提出了一种二元异质结光催化剂的催化机制用于解释提高的光催化活性。

     

  • 图  1  不同光催化材料的XRD图谱

    Figure  1.  XRD patterns of different photocatalytic materials

    图  2  不同光催化材料的SEM图像

    Figure  2.  SEM images of different photocatalytic materials

    图  3  Bi2O3/BiOI复合光催化材料的FTIR图谱

    Figure  3.  FTIR spectra of Bi2O3/BiOI composite photocatalytic material

    图  4  不同光催化材料的紫外漫反射图谱

    Figure  4.  UV-Vis DRS of different photocatalytic materials

    图  5  不同光催化材料的禁带宽度

    Figure  5.  Band gaps of different photocatalytic materials

    图  6  不同光催化材料的荧光光谱图

    Figure  6.  Fluorescence spectroscopy of different photocatalytic materials

    图  7  不同光催化材料的阻抗图

    Figure  7.  Impedance diagrams of different photocatalytic materials

    图  8  不同摩尔比 (a)、反应温度 (b)、反应时间 (c) 及pH (d) 对Bi2O3/BiOI光催化材料性能的影响

    Figure  8.  Effects of different molar ratios (a), reaction temperature (b), reaction time (c) and pH (d) on the properties of Bi2O3/BiOI photocatalytic material

    图  9  模拟太阳光照射下不同光催化材料的降解曲线 (a) 及动力学曲线 (b)

    Figure  9.  Degradation curves (a) and kinetic curves (b) of different photocatalytic materials under simulated sunlight irradiation

    图  10  捕捉BiOI (a)、Bi2O3 (b)、Bi2O3/BiOI (c) 中活性物种的柱状图

    Figure  10.  Histogram of captured active species in BiOI (a), Bi2O3 (b), and Bi2O3/ BiOI (c)

    图  11  Bi2O3/BiOI复合光催化材料的降解机制

    Figure  11.  Degradation mechanism of Bi2O3/BiOI composite photocatalytic material

    TC—Tetracycline; Eg—Band gap

  • [1] YANG Wen, WANG Ying. Enhanced electron and mass transfer flow-through cell with C3N4-MoS2 supported on three-dimensional graphene photoanode for the removal of antibiotic and antibacterial potencies in ampicillin wastewater[J]. Applied Catalysis B: Environmental,2021,282:119574. doi: 10.1016/j.apcatb.2020.119574
    [2] YU Yutang, WU Kun, XU Weicheng, et al. Adsorption-photocatalysis synergistic removal of contaminants under antibiotic and Cr(VI) coexistence environment using non-metal g-C3N4 based nanomaterial obtained by supramolecular self-assembly method[J]. Journal of Hazardous Materials,2021,404:124171. doi: 10.1016/j.jhazmat.2020.124171
    [3] LIU Shuyuan, RU Jiling, LIU Fanzhe. NiP/CuO composites: Electroless plating synthesis, antibiotic photodegradation and antibacterial properties[J]. Chemosphere,2021,267:129220. doi: 10.1016/j.chemosphere.2020.129220
    [4] ZHANG Hao, TANG Guogang, WAN Xiong, et al. High-efficiency all-solid-state Z-scheme Ag3PO4/g-C3N4/MoSe2 photocatalyst with boosted visible-light photocatalytic performance for antibiotic elimination[J]. Applied Surface Science,2020,530:147234. doi: 10.1016/j.apsusc.2020.147234
    [5] ZHONG Shuang, WANG Xiaozhu, WANG Yu, et al. Preparation of Y3+-doped BiOCl photocatalyst and its enhancing effect on degradation of tetracycline hydrochloride wastewater[J]. Journal of Alloys and Compounds,2020,843:155598. doi: 10.1016/j.jallcom.2020.155598
    [6] ZHU M T, TONNI A K, YOU Y P, et al. Fabrication, characterization, and application of ternary magnetic recyclable Bi2WO6/BiOI@Fe3O4 composite for photodegradation of tetracycline in aqueous solutions[J]. Journal of Environmental Management,2020,270:110839.
    [7] JIANG Xueding, LAI Shufeng, XU Weicheng, et al. Novel ternary BiOI/g-C3N4/CeO2catalysts for enhanced photocatalytic degradation of tetracycline under visible-light radiation via double charge transfer process[J]. Journal of Alloys and Compounds,2019,809:151804. doi: 10.1016/j.jallcom.2019.151804
    [8] YANG Yang, ZENG Zhuotong, ZHANG Chen, et al. Construction of iodine vacancy-rich BiOI/Ag@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation: Transformation pathways and mechanism insight[J]. Chemical Engineering Journal,2018,349:808-821. doi: 10.1016/j.cej.2018.05.093
    [9] GUO Siyao, LUO Huihua, LI Ying, et al. Structure-controlled three-dimensional BiOI/MoS2 microspheres for boosting visible-light photocatalytic degradation of tetracycline[J]. Journal of Alloys and Compounds,2021,852:157026. doi: 10.1016/j.jallcom.2020.157026
    [10] KANDI Debasmita, BEHERA Arjun, SAHOO Srikant, et al. CdS QDs modified BiOI/Bi2MoO6 nanocomposite for degradation of quinolone and tetracycline types of antibiotics towards environmental remediation[J]. Separation and Purification Technology,2020,253:117523. doi: 10.1016/j.seppur.2020.117523
    [11] HUANG Liying, YANG Lei, LI Yeping, et al. p-n BiOI/Bi3O4Cl hybrid junction with enhanced photocatalytic performance in removing methyl orange, bisphenol A, tetracycline and Escherichia coli[J]. Applied Surface Science,2020,527:146748. doi: 10.1016/j.apsusc.2020.146748
    [12] CHEN Yongyang, LIU Yonggang, XIE Xin, et al. Synthesis flower-like BiVO4/BiOI core/shell heterostructure photocatalyst for tetracycline degradation under visible-light irradiation[J]. Journal of Materials Science: Materials in Electronics,2019,30(10):9311-9321. doi: 10.1007/s10854-019-01261-9
    [13] YAN Qishe, WANG Peiying, GUO Yuan, et al. Constructing a novel hierarchical ZnMoO4/BiOI heterojunction for efficient photocatalytic degradation of tetracycline[J]. Journal of Materials Science: Materials in Electronics,2019,30(20):19069-19076. doi: 10.1007/s10854-019-02264-2
    [14] HAO Rong, XIAO Xin, ZUO Xiaoxi, et al. Efficient adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride using mesoporous BiOI microspheres[J]. Journal of Hazardous Materials,2012,209:137-145.
    [15] YUAN Ding, HUANG Liying, LI Yeping, et al. A novel AgI/BiOI/pg-C3N4 composite with enhanced photocatalytic activity for removing methylene orange, tetracycline and E. coli[J]. Dyes and Pigments,2020,177:108253. doi: 10.1016/j.dyepig.2020.108253
    [16] WANG Qi, SHI Xiaodong, LIU Enqin, et al. Facile synthesis of AgI/BiOI-Bi2O3 multi-heterojunctions with high visible light activity for Cr(VI) reduction[J]. Journal of Hazardous Materials,2016,317:8-16. doi: 10.1016/j.jhazmat.2016.05.044
    [17] CONG Yanqing, JI Yun, GE Yaohua, et al. Fabrication of 3D Bi2O3-BiOI heterojunction by a simple dipping method: Highly enhanced visible-light photoelectrocatalytic activity[J]. Chemical Engineering Journal,2017,307:572-582. doi: 10.1016/j.cej.2016.08.114
    [18] HAN Suiqi, LI Jia, YANG Kailun, et al. Fabrication of a β-Bi2O3/BiOI heterojunction and its efficient photocatalysis for organic dye removal[J]. Chinese Journal of Catalysis,2015,36(12):2119-2126.
    [19] CHAKRABORTY A K, GANGULI S, BERA S, et al. Preparation of CdS/BiOCl/Bi2O3 double composite system for visible light active photocatalytic applications[J]. Journal of Photochemistry & Photobiology A: Chemistry,2018,364:159-168.
    [20] XIE Xin, WANG Shenbo, ZHANG Yongjiang, et al. Facile construction for new core-shell Z-scheme photocatalyst GO/AgI/Bi2O3 with enhanced visible-light photocatalytic activity[J]. Journal of Colloid and Interface Science,2021,581:148-158. doi: 10.1016/j.jcis.2020.07.128
    [21] LI Bo, NENGZI Lichao, GUO Ruonan, et al. Novel synthesis of Z-scheme α-Bi2O3/g-C3N4 composite photocatalyst and its enhanced visible light photocatalytic performance: Influence of calcination temperature[J]. Chinese Chemical Letters,2020,31(10):2705-2711. doi: 10.1016/j.cclet.2020.04.026
    [22] LI Binrong, CHU Jinyu, LI Yi, et al. Preparation and performance of visible-light-driven Bi2O3/ZnS heterojunction functionalized porous CA membranes for effective degradation of Rhodamine B[J]. Physica Status Solidi A: Applications and Materials Science,2018,215(11):1701061.
    [23] WEI Zhiping, ZHENG Nan, DONG Xiaoli, et al. Green and controllable synthesis of one-dimensional Bi2O3/BiOI heterojunction for highly efficient visible-light-driven photocatalytic reduction of Cr(VI)[J]. Chemosphere,2020,257:127210.
    [24] LI Yongyu, WANG Jianshe, YAO Hongchang, et al. Chemical etching preparation of BiOI/Bi2O3 heterostructures with enhanced photocatalytic activities[J]. Catalysis Communications, 2011, 12(7): 660-664.
  • 加载中
图(11)
计量
  • 文章访问数:  1064
  • HTML全文浏览量:  555
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-01
  • 修回日期:  2021-04-26
  • 录用日期:  2021-05-06
  • 网络出版日期:  2021-05-13
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回