留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CaC2O4-直接枣红B/壳聚糖复合材料的制备及对乙基紫的吸附性能

赵丹华 张少丽 陈作义 柳晓俊 王柯 王峰倩 雷月清

赵丹华, 张少丽, 陈作义, 等. CaC2O4-直接枣红B/壳聚糖复合材料的制备及对乙基紫的吸附性能[J]. 复合材料学报, 2022, 39(2): 736-745. doi: 10.13801/j.cnki.fhclxb.20210506.003
引用本文: 赵丹华, 张少丽, 陈作义, 等. CaC2O4-直接枣红B/壳聚糖复合材料的制备及对乙基紫的吸附性能[J]. 复合材料学报, 2022, 39(2): 736-745. doi: 10.13801/j.cnki.fhclxb.20210506.003
ZHAO Danhua, ZHANG Shaoli, CHEN Zuoyi, et al. Preparation of CaC2O4-direct claret B/chitosan composite materials and adsorption properties for ethyl violet[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 736-745. doi: 10.13801/j.cnki.fhclxb.20210506.003
Citation: ZHAO Danhua, ZHANG Shaoli, CHEN Zuoyi, et al. Preparation of CaC2O4-direct claret B/chitosan composite materials and adsorption properties for ethyl violet[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 736-745. doi: 10.13801/j.cnki.fhclxb.20210506.003

CaC2O4-直接枣红B/壳聚糖复合材料的制备及对乙基紫的吸附性能

doi: 10.13801/j.cnki.fhclxb.20210506.003
基金项目: 广东省普通高校特色创新项目(2019KTSCX118);广东省大学生创新实验项目(S201914278027;S202014278021);广东省普通高校进材料与节能减排工程技术开发中心(2016GCZX007)
详细信息
    通讯作者:

    赵丹华,博士,教授,研究方向为环境功能材料的结构设计与合成 E-mail:zhaodanhua@gdei.edu.cn

  • 中图分类号: X131.2

Preparation of CaC2O4-direct claret B/chitosan composite materials and adsorption properties for ethyl violet

  • 摘要: 以壳聚糖(CTS)和草酸钙-直接枣红B(CaC2O4-DB)杂化材料为原料,采用共混原位固载法制备草酸钙-直接枣红B/壳聚糖(CaC2O4-DB/CTS)复合材料。利用SEM、BET和FTIR对 CTS 和CaC2O4-DB/CTS的形貌及结构等进行表征分析,CaC2O4-DB的固载并未改变CTS的形貌结构,仅增加其比表面积和结合位点。详细考察了吸附时间、乙基紫 (Ethyl violet,EV)初始浓度、溶液pH及温度等因素对CaC2O4-DB/CTS吸附EV的影响,初步探讨了CaC2O4-DB/CTS对EV的吸附动力学和吸附热力学行为。结果表明,CaC2O4-DB/CTS吸附EV在3 h内达到吸附平衡,且pH=8、投加量为6 g/L时,25℃的100 mg/L EV溶液(化学需氧量(COD)为187 mg/L)染料去除率高达95%,COD去除率达90%以上。该吸附过程是自发进行的,符合Langmuir等温线模型和准二级动力学模型,其吸附过程由颗粒内扩散和化学吸附共同控制。

     

  • 图  1  各种材料SEM图像:(a) 壳聚糖(CTS)材料表面;(b) CTS材料切面;(c) CaC2O4-直接枣红B(DB)/CTS材料表面;(a1) CTS材料表面局部放大图;(b1) CTS材料切面局部放大图;(c1) CaC2O4-DB/CTS材料切面;(d) CaC2O4-DB材料

    Figure  1.  SEM images of chitosan (CTS) ((a), (b)), CaC2O4-direct claret B (DB)/CTS (c) and CaC2O4-DB (d), area of CaC2O4-DB materials (a1), CTS materials (b1), CaC2O4-DB/CTS materials (c1)

    图  2  CTS及CaC2O4-DB/CTS材料的FTIR图谱

    Figure  2.  FTIR spectra of CTS and CaC2O4-DB/CTS materials

    图  3  CaC2O4-DB/CTS投加量对乙基紫(EV)吸附的影响(100 mg·L−1 EV)

    Figure  3.  Effect of CaC2O4-DB/CTS dosage on adsorption of ethyl violet (EV) (100 mg·L−1 EV)

    图  4  EV初始浓度对CaC2O4-DB/CTS吸附的影响

    Figure  4.  Effect of initial concentration of EV on CaC2O4-DB/CTS adsorption

    图  5  吸附时间对CaC2O4-DB/CTS吸附效果的影响

    Figure  5.  Effect of contact time on CaC2O4-DB/CTS adsorption

    图  6  温度对CaC2O4-DB/CTS吸附效果的影响

    Figure  6.  Effect of temperature of EV on CaC2O4-DB/CTS adsorption

    图  7  pH对CaC2O4-DB/CTS吸附效果的影响

    Figure  7.  Effect of pH of EV on CaC2O4-DB/CTS adsorption

    图  8  CaC2O4-DB/CTS对EV吸附颗粒内扩散动力学模型拟合曲线

    Figure  8.  Fitting curve of intra-particle kinetic model for the adsorption of EV on CaC2O4-DB/CTS

    表  1  动边界模型拟合参数

    Table  1.   Parameters of moving boundary model Rate controlling step

    Moving boundary model Rate controlling stepkR2
    Liquid film diffusion 0.01217 0.9643
    Intraparticle diffusion 0.00280 0.9341
    Chemical reaction 0.00196 0.9319
    Notes: k—Constant of rate; R2—Fitting coefficients.
    下载: 导出CSV

    表  2  CaC2O4-DB/CTS吸附EV各吸附动力学方程的参数

    Table  2.   Kinetics parameters of kinetic models for the adsorption of EV on CaC2O4-DB/CTS

    First-order kinetic model Second-order kinetic modelElovich model
    qe/(mg·g−1)K1/min−1R2qe/(mg·g−1)K2/(g·mg−1·min−1)R2qe/(mg·g−1)α/(g·mg −1·min−1)R2
    13.22 0.0204 0.9682 32.15 0.0311 0.9995 30.63 109.57 0.9858
    Notes:qe—Equilibrium adsorption capacity; qt—Adsorption capacity at time t; kl—Rate constant of the pseudo-first-order model; k2—Rate constant of the pseudo-second-order model; β—Desorption constant.
    下载: 导出CSV

    表  3  CaC2O4-DB/CTS对EV吸附颗粒内扩散模型参数

    Table  3.   Parameters of intra-particle kinetic model for the adsorption of EV on CaC2O4-DB/CTS

    The first step >The second step >The third step
    >qt=1.765t1/2+14.51>qt=0.942t1/2+19.45>qt=0.209t1/2+28.19
    kp C R2 kp C R2 kp C R2
    1.765 14.51 0.9933 0.942 19.45 0.9915 0.209 28.19 0.9999
    Notes:kp—Constant intra-particle diffusion rate; C—Constant of the reaction boundary layer effect.
    下载: 导出CSV

    表  4  CaC2O4-DB/CTS对EV等温吸附线参数

    Table  4.   Isotherm parameters for adsorption of EV on CaC2O4-DB/CTS

    T/KLangmuir modelFreundlich modelD-R model
    qm/(mg·g−1)KL/(L·mg−1)R2KF/(mg·g−1
    (L·mg−1)1/n
    nR2k/(mol2·kJ−2)R2ε/(kJ·mol−1)
    288.15 40.65 0.0768 0.9964 7.72 2.75 0.9842 0.4671 0.9429 5.17
    298.15 45.25 0.0959 0.9952 8.85 2.64 0.9285 0.4046 0.9794 5.96
    308.15 51.81 0.1092 0.9980 9.62 2.40 0.9458 0.3054 0.9883 7.92
    Notes: T—Temperature; qm—Maximumadsorption capacity; KL —Langmuir characteristic constant; KF—Freundlich characteristic constant; n—Freundlich characteristic constant; k—Constant of adsorption energy; ε—Adsorption potential energy.
    下载: 导出CSV

    表  5  CaC2O4-DB/CTS材料吸附EV的热力学参数

    Table  5.   Isotherm parameters for adsorption of EV on CaC2O4-DB/CTS

    C0/(mg·L−1)T/KΔG/(kJ·mol−1)ΔH/(kJ·mol−1)ΔS/(J·(mol·K)−1)
    125 288.15-308.15 −2.204 - −4.412 27.5228 0.1031
    150 −1.598 - −3.393 22.5636 0.0839
    175 −0.9234 - −2.810 24.5821 0.0887
    Notes: C0—Initial concentration; ΔG—Gibbs free energy change; ΔH—Enthalpy change; ΔS—Entropy change.
    下载: 导出CSV
  • [1] YANG X Y, CHEN L H, LI Y, et al. Hierarchically porous materials: Synthesis strategies and structure design[J]. Che-mical Society Reviews,2017,46(2):481-558. doi: 10.1039/C6CS00829A
    [2] BHATNAGAR A, SILLANPAA M, WITEK A. Agricultural waste peels as versatile biomass for water purification-A review[J]. Chemical Engineering Journal,2015,270:244-271. doi: 10.1016/j.cej.2015.01.135
    [3] KAYAN A. Inorganic-organic hybrid materials and their adsorbent properties[J]. Advanced Composite and Hybrid Materials,2019,2:34. doi: 10.1007/s42114-018-0073-y
    [4] NF N T, KAMARUDDIN A F, WAN I. Advances in organic-inorganic hybrid sorbents for the extraction of organic and inorganic pollutants in different types of food and environmental samples[J]. Journal of Separation Science,2018,41:195-208. doi: 10.1002/jssc.201700689
    [5] PARISA M P, SEYED J P. Review on recent progress in chitosan-based hydrogels for wastewater treatment application[J]. Carbohydrate Polymers,2018,201:264-279. doi: 10.1016/j.carbpol.2018.08.070
    [6] 牛耀岚. 新型壳聚糖纤维材料的制备及其对重金属离子的吸附研究[D]. 上海: 上海交通大学, 2017.

    NIU Yaolan. The preparation of chitosan-based fibrous materials and research of adsorption performance for metal ions[D]. Shanghai: Shanghai Jiaotong University, 2017(in Chinese).
    [7] ZHANG Q S, ZHANG T T, HE T, et al. Removal of crystal violet by clay/PNIPAm nanocomposite hydrogels with various clay contents[J]. Applied Clay Science,2014,90:1-5. doi: 10.1016/j.clay.2014.01.003
    [8] 赵丹华. CaF2-WAGGS杂化吸附材料的制备及应用研究[J]. 水处理技术, 2012, 8(8):51-54. doi: 10.3969/j.issn.1000-3770.2012.08.014

    ZHAO Danhua. Preparation of the calcium fluoride-weak acid green as hybrid absorption material and application to dye wastewater treatment[J]. Technology of Water Treatment,2012,8(8):51-54(in Chinese). doi: 10.3969/j.issn.1000-3770.2012.08.014
    [9] MOHAMMED E K, EI M N, BAHCINE B, et al. Study of removal of Congo red by local natural clay[J]. Scientific Study and Research,2016,17(3):295-307.
    [10] KANNAN K P, GEORGE T S, GURU K S. Extraction, purification and characterization of chitosan from endophytic fungi isolated from medicinal plants[J]. World Journal of Science and Technology,2011,1(4):43-48.
    [11] 马建青. 基于壳聚糖和石墨相氮化碳的净水材料制备及其机理研究[D]. 杭州: 浙江大学, 2018.

    MA Jianqing. Preparation and mechanism study of water purification materials based on chitosan and graphitic carbon nitride[D]. Hangzhou: Zhejiang University, 2018(in Chinese).
    [12] MRIDUSMITA G, PRODEEP P. Enhanced adsorption of cationic dyes using sulfonic acid modified activated carbon[J]. Journal of Environmental Chemical Engineering,2017,5:3508-3517. doi: 10.1016/j.jece.2017.07.016
    [13] FAN L, LU Y, YANG L Y, et al. Fabrication of polyethylenimine-functionalized sodium alginate/cellulose nanocrystal/polyvinyl alcohol core-shell microspheres ((PVA/SA/CNC)@PEI) for diclofenac sodium adsorption[J]. Journal of Colloid and Interface Science,2019,554:48-58. doi: 10.1016/j.jcis.2019.06.099
    [14] SAYED G O. Removal of methylene blue and crystal violet from aqueous solutions by palm kernel fiber[J]. Desalination,2011,272:225-232. doi: 10.1016/j.desal.2011.01.025
    [15] 谭忠祥. 高堆积密度壳聚糖及其制备方法: 中国, ZL02110716.5[P]. 2002-8-21.

    TAN Zhongxiang. High bulk density chitosan and its preparation method: China, ZL02110716.5[P]. 2002-8-21(in Chinese).
    [16] HUI K S, CHO C Y N, KOT S C. Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash[J]. Journal of Hazardous Materials,2005,127(13):89-101.
    [17] SILVIA P D, FABIANO B S, APARECIDO N M, et al. Kinetic, equilibrium and thermodynamic phenomenological modeling of reactive dye adsorption onto polymeric adsorbent[J]. Chemical Engineering Journal,2017,307:466-475. doi: 10.1016/j.cej.2016.08.104
    [18] LIU C, OMER A M, OUYANG X K. Adsorptive removal of cationic methylene blue dye using carboxymethyl cellulose/k-carrageenan/activated montmorillonite composite beads: Isotherm and kinetic studies[J]. International Journal of Biological Macromolecules,2018,106:823-833. doi: 10.1016/j.ijbiomac.2017.08.084
    [19] KUMARI H J, KRISHNAMOORTHY P, ARUMUGAM T K, et al. An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/Chitosan composite: A novel low-cost adsorbent[J]. International Journal of Biological Macromolecules,2017,96:324-333. doi: 10.1016/j.ijbiomac.2016.11.077
    [20] SONG X, AN J L, HE C, et al. A bioinspired strategy towards super-adsorbent hydrogel spheres via self-sacrificing micro-reactors for robust wastewater remediation[J]. Jour-nal of Materials Chemistry,2019,7:21386-21403. doi: 10.1039/C9TA05550A
    [21] HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry,1999,34(5):451-465. doi: 10.1016/S0032-9592(98)00112-5
    [22] 万骏. 基于功能设计的水凝胶对水中磷酸盐去除研究[D]. 武汉: 华中科技大学, 2018.

    WAN Jun. Hydrogels based on functional design for phosphorous removal from water[D]. Wuhan: Huazhong University of Science and Technology, 2018(in Chinese).
    [23] HU X, ZHANG H, SUN Z R. Adsorption of low concentration ceftazidime from aqueous solutions using impregnated activated carbon promoted by iron copper and aluminum[J]. Applied Surface Science,2017,392:332-341. doi: 10.1016/j.apsusc.2016.09.047
    [24] AHMED M J. Adsorption of quinolone, tetracycline from aqueous solutions onto multi-walled carbon nanotubes with different oxygen contents[J]. Scientific Reports,2014,4(3):4326-4332.
    [25] KAUSHAL S, BADRU R, KUMAR S, et al. Efficient removal of cationic and anionic dyes from their binary mixtures by organic-inorganic hybrid material[J]. Journal of Inorganic and Organometallic Polymers and Materials,2018,28(3):968-977. doi: 10.1007/s10904-018-0817-8
    [26] INYINBOR A A, ADEKOLA F A, OLATUNJI G A. Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp[J]. Water Resources and Industry,2016,15:14-27. doi: 10.1016/j.wri.2016.06.001
    [27] SANGHWA O, KAWK M Y, SHIN W S. Competitive sorption of lead and cadmium onto sediments[J]. Chemical Engineering Journal,2009,152(23):376-388.
    [28] SCHEUFELE F B, MODENEDS A N, BORBA C E, et al. Monolayer-multilayer adsorption phenome-nological model: Kinetics, equilibrium and thermodynamics[J]. Chemical Engineering Journal,2016,284:1328-1341. doi: 10.1016/j.cej.2015.09.085
    [29] ISAH U A, ABDULRAHEEM G, BALA S, et al. Kinetics, equilibrium and thermodynamics studies of Reactive Blue 19 dye adsorption on coconut shell based activated carbon[J]. International Biodeterioration Biodegradation,2015,102:265-273. doi: 10.1016/j.ibiod.2015.04.006
    [30] AHMAD A, MOHD-SETAPAR S H, AHMAD A, et al. Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater[J]. RSC Advances,2015,5(39):30801-30818. doi: 10.1039/C4RA16959J
    [31] OEPEN B V, KORDEL W, KLEIN W. Sorption of nonpolar and polar compounds to soils: Processes, measurements and experience with the applicability of the modified OECD-Guideline 106[J]. Chemosphere,1991,22(3-4):285-304. doi: 10.1016/0045-6535(91)90318-8
    [32] NOLLET H, ROELS M, LUTGEN P, et al. Removal of PCBs from wastewater using fly ash[J]. Chemosphere, 2003, 53: 655-665.
    [33] 国家环境保护局. 水质化学需氧量的测定−重铬酸盐法: GB/T 11914—1989[S]. 北京: 中国标准出版社, 1989.

    National Environmental Protection Agency. Water quality-Determination of the chemical oxygen demand-Dichromate method: GB/T 11914—1989[S]. Beijing: China Standards Press, 1989(in Chinese).
    [34] 陈锦诗, 孙诗乐, 黄文海, 等. CaF2-CR杂化吸附材料对乙基紫的吸附性能研究[J]. 化学试剂, 2018, 40(10):937-942, 970.

    CHEN Jinshi, SUN Shile, HUANG Wenhai, et al. Adsorption of ethylene violet on hybrid adsorption material of CaF2-CR[J]. Chemical Reagents,2018,40(10):937-942, 970(in Chinese).
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  653
  • HTML全文浏览量:  396
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-25
  • 修回日期:  2021-04-06
  • 录用日期:  2021-04-12
  • 网络出版日期:  2021-05-07
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回